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Abstract

The Bethe surface of a material is an essential element in the study of inelastic scattering at low impact energies where the optical
approximation fails. In this work we examine various semi-empirical models for the dielectric response function of condensed water
towards an improved description of the energy-loss function over the whole energy–momentum plane (i.e. Bethe surface). The experi-
mental ‘‘optical” data (i.e. at zero momentum transfer) for the valence bands of liquid and solid water are analytically represented by
a sum-rule constrained linear combination of Drude-type functions. The dependence on momentum transfer is introduced through var-
ious widespread ‘‘extension” schemes which are compared against the available Compton scattering data. It is shown that the widely used
Lindhard function along with its ‘‘single-pole” (or ‘‘d-oscillator”) approximation used in the Penn and Ashley models, as well as the
Ritchie and Howie extended-Drude scheme with a simple quadratic dispersion, predict a sharp Bethe ridge which compares poorly with
the experimental profile. In contrast, the Mermin dielectric function provides a more realistic account of the observed broadening with
momentum transfer. An improved fully-extended-Drude model is presented which incorporates the momentum broadening and line-shift
of the Bethe ridge and distinguishes between the different dispersion of the discrete and continuum spectra of water.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of inelastic scattering of swift charges by
atoms/molecules in both the gas and condensed phase, is
largely pursued within the plane-wave Born approximation
(PWBA) which provides a consistent theoretical frame-
work over a substantial part of the electronic regime [1].
Moreover, if supplemented with appropriate correction
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terms, the PWBA may provide fairly accurate inelastic
and stopping cross sections down to the Bragg peak region
[2]. The only non-trivial parameter in this methodology is a
material-dependent term which reflects the response of the
target to the external perturbation and defines the so-called
Bethe surface [3]. Depending on whether the target atoms/
molecules are in the gas or condensed phase, it is custom-
ary to define the Bethe surface as a three-dimensional plot
over the energy–momentum plane of either the atomic/
molecular generalised-oscillator-strength (GOS) or the
solid-state energy-loss function (ELF), respectively [3].
Formally, both the GOS and ELF depend on the initial
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and final state many-electron wavefunctions. Thus, apart
from the free-electron-gas and the atomic hydrogen where
close analytic forms exist, the calculation of the ELF (or
GOS) from first-principles is, up to this date, a formidable
task for practical applications [2].

The above state of affairs has motivated work on semi-
empirical models which try to circumvent the perplexities
of a theoretical many-body calculation by taking advantage
the direct connection of the ELF (or GOS) to measurable
properties of the material. Perhaps the most popular
approach is to use experimental ‘‘optical” data (i.e. at zero
momentum transfer) to describe the dependence on energy
transfer and simple dispersion (extension) schemes to incor-
porate the dependence on momentum transfer [4]. These so-
called extended-optical-data models are expected to provide
a computationally simple, yet accurate, representation of the
ELF over the whole Bethe surface. Ritchie and Howie [5]
advanced the extended-Drude scheme whereby the momen-
tum dependence is implemented directly into the Drude coef-
ficients, whereas Penn [6], Ashley [7] and Fernandez-Varea
et al. [8] have employed various approximations to the Lind-
hard dielectric function [9]. More recently, in an effort to
improve upon the Lindhard-based models, Garcia-Molina,
Abril and co-workers [10] have applied the Mermin dielectric
function [11] which provides a theoretically more consistent
account of the dependence on momentum transfer.

With respect to condensed water, Emfietzoglou and co-
workers [12–16] have provided a comprehensive review and
intercomparison of various extended-optical-data models
and advanced an improved scheme for both the liquid
and solid phase [14,16]. The new development is based on
an effective parameterization of the available inelastic
X-ray scattering (IXS) data [17,18] by means of a fully-
extended-Drude (FED) model in the Ritchie and Howie
sense. Contrary to all earlier experimental data for con-
densed water which are restricted to the optical limit, the
IXS (Compton) data extend to finite values of momentum
transfer providing, for the first time, an empirical test for
dispersion models.

In the present work we study various aspects of the Bethe
surface of condensed water based on the application of the
Drude, Lindhard and Mermin dielectric functions. In partic-
ular, we concentrate on the momentum dependence of the
dielectric function which dictates the Bethe ridge profile.
We restrict our study to the valence bands where condensed
phase effects are expected to be dominant and the dielectric
theory most justified. The present work is relevant to inelas-
tic calculations at low impact energies (e.g. Bragg peak
region) where the optical-approximation fails and should
be substituted by various integrals over the Bethe surface.

2. Methodology

2.1. The extended-Drude dielectric function

The extended-Drude model has been particularly popu-
lar mainly because of its applicability to a broad range of
materials and the convenient analytic properties of the
Drude function. Following Ritchie and Howie [5] the
experimental optical-ELF is analytically represented by a
sum of Drude-type functions:

Im
�1

eðE; q ¼ 0Þ

� �
exp

¼
X

j

AjDðE;Cj;XjÞ; ð1Þ

where e is the dielectric response function, E and q are the
transferred energy and momentum, respectively, Aj, Cj and
Xj are coefficients associated with the strength, damping
and transition energy, respectively, of each electronic chan-
nel j and ‘‘D” denotes the Drude function:

DðE;Cj;XjÞ ¼
CjE

ðX2
j � E2Þ2 þ ðCjEÞ2

: ð2Þ

Ritchie and Howie [5] suggested an empirical determina-
tion of the above coefficients based on the amplitude (Aj),
width (Cj) and position (Xj) of each peak in the deconvolu-
tion of the experimental spectrum. The extension to the
momentum space may then be obtained by appropriate
dispersion relations for all or some of the coefficients, e.g.
using Cj(q) = C(Cj,q) and Xj(q) = X(Xj,q) where q is the
momentum transfer. In general, the particular analytic
expression for the momentum dependence should be found
empirically. The most popular form of the Ritchie and Ho-
wie [5] model overcomes the requirement of any parametric
fitting beyond the optical limit by adopting a pure qua-
dratic dispersion relation for the energy-coefficient while
keeping the rest of the coefficients independent of q:

Im
�1

eðE; qÞ

� �
¼
X

j

AjDðE;Cj;XjðqÞÞ; ð3aÞ

XjðqÞ ¼ Xj þ
q2

2me

; ð3bÞ

where me is the electron mass. Besides its simplicity, Eq. (3b)
is correct at the two limiting cases of q ? 0 and q ?1
where Xj(q) approaches its optical value, Xj(q = 0) and the
free-electron kinematic value corresponding to the Bethe
ridge, q 2/2me, respectively. Also, for materials where the
Fermi and plasmon energies do not differ appreciably, Eq.
(3b) resembles the plasmon dispersion of the free-electron
gas at small-q. Recent applications of the above version of
the Ritchie and Howie model may be found in Leger et al.
[19], Akkerman et al. [20] and Tung et al. [21].

For condensed water, the availability of experimental
data for all dielectric function representations, namely,
ReðeÞ ¼ e1; ImðeÞ ¼ e2 and Im �1=eð Þ, has motivated the
development of somewhat more elaborate representations
of its dielectric response properties where basic band struc-
ture characteristics are accounted for [12–16,22]. In the
study of liquid [12–15] and solid [16] water the following
set of equations has been adopted to represent the experi-
mental data. For the imaginary part of the dielectric func-
tion we use:



Im½eðE; q ¼ 0Þ�exp ¼
X

j

eðDÞ2 ðE; q ¼ 0; fj;Ej; cjÞ ¼

Pioniz

j
D2ðE; fj;Ej; cjÞ þ

Pexcit

j

~D2ðE; fj;Ej; cjÞ; for E > Bioniz;min

Pexcit

j

~D2ðE; fj;Ej; cjÞ; for Bexcit;min 6 E < Bioniz;min

;

8>>><
>>>:

ð4Þ
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where

D2ðE; fj;Ej; cjÞ ¼ E2
p

fjcjE

ðE2
j � E2Þ2 þ ðcjEÞ

2
; ð4aÞ

~D2ðE; fj;Ej; cjÞ ¼ E2
p

2f jc
3
j E3

ðE2
j � E2Þ2 þ ðcjEÞ

2
h i2

: ð4bÞ

Accordingly, the real part reads:

Re½eðE; q ¼ 0Þ�exp ¼ eðDÞ1 ðE; q ¼ 0; fj;Ej; cjÞa11 j

¼ 1þ
Xioniz

j

D1ðE; fj;Ej; cjÞ

þ
Xexcit

j

~D1ðE; fj;Ej; cjÞ; ð5Þ

where

D1ðE; fj;Ej; cjÞ ¼ E2
p

fjðE2
j � E2Þ

ðE2
j � E2Þ2 þ ðcjEÞ

2
; ð5aÞ

~D1ðE; fj;Ej; cjÞ ¼ E2
p

fjðE2
j � E2Þ ðE2

j � E2Þ2 þ 3ðcjEÞ
2

h i
ðE2

j � E2Þ2 þ ðcjEÞ
2

h i2
:

ð5bÞ

Then, the ELF is obtained by
Im
�1

eðE; q ¼ 0Þ

� �
exp

¼

P
j

eðDÞ2 ðE; q ¼ 0; fj;Ej; cjÞ

eðDÞ1 ðE; q ¼ 0; fj;Ej; cjÞa11 j

� �2

þ
P

j
eðDÞ2 ðE; q ¼ 0; fj;Ej; cjÞ

 !2
: ð6Þ
In the previous equations, Ep is the nominal plasmon en-
ergy (21.46, 20.82 and 20.59 eV for liquid water and amor-
phous and hexagonal ice, respectively). Note that the
coefficients fj, cj and Ej in Eqs. (4)–(6) correspond to the
(Aj, Cj, Xj) of the original model proposed by Ritchie and
Howie [5]. The notation D1,2and ~D1;2 stands for the ‘‘nor-
mal” and ‘‘derivative” forms of the Drude function. In
the analytic deconvolution of the experimental optical
spectra we used a superposition of four ‘‘normal” Drude
functions to represent the valence bands with ionization
thresholds (Bioniz,min) at 10 eV (1b1), 13 eV (3a1), 17 eV
(1b2) and 32 eV (2a1) and five ‘‘derivative” Drude functions
(which are more sharply peaked) for the discrete excita-
tions which have peak-maxima in the �8–15 eV range
(excitation levels: A1B1, B1A1, Ryd A + B, Ryd C + D, dif-
fuse bands). The Bexcit,min is taken at 7–8 eV (correspond-
ing to the photoabsorption threshold or the band gap).
The values of the Drude coefficients fj, Ej and cj for each
valence band transition in liquid and solid water may be
found in [14] and [16], respectively.

The consistency of the ‘‘fitting” procedure is ensured by
the fulfillment (to within 1%) of the following sum rules for
the normalized number of valence electrons:
N ðmÞeff ¼
2

pE2
p

Z 1

0

EIm eDðE; q ¼ 0Þ½ �dE ¼ 1� N ðKÞeff ; ð7aÞ

N ðmÞeff ¼
2

pE2
p

Z 1

0

EIm
�1

eDðE; q ¼ 0Þ

� �
dE ¼ 1� N ðKÞeff ; ð7bÞ
where N ðKÞeff ¼ 0:178 [23] is the normalized number of effec-
tive K-shell electrons. A further consistency test for the
optical-ELF is the calculation of the mean excitation and
ionization energy of the stopping power theory, the so-
called I-value:
lnðIÞ ¼

R1
0

E lnðEÞIm �1
eDðE;0Þ

h i
dER1

0
EIm �1

eDðE;0Þ

h i
dE

: ð8Þ

The I-value for the valence bands according to the above
optical-data model comes out at 45.7 eV. In contrast to
the sum rules (Eqs. (7a) and (7b)) where the K-shell has
a minimal contribution, its influence on the I-value is sig-
nificant. Using a Drude parameterization for the NIST
photoelectric data of the oxygen K-shell, the total I-value
becomes 82.4 eV in very good agreement with other
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theoretical and experimental predictions [14]. Note that
whereas the above sum rules are most sensitive to the low
energy part of the absorption spectrum, the I-value is also
sensitive to high energy transfers. Thus, Eqs. (7) and (8)
provide a consistency test for the overall reliability of the
optical-data model over the entire energy transfer range.

The momentum dependence is introduced by extending
all three Drude coefficients (fully-extended-Drude model)
in the sense of: eD(E,q) = eD(E,q = 0;fj(q),Ej(q),cj(q)). Our
recent analysis [14] of the experimental data for the Bethe
ridge of liquid water has led to the following dispersion
relations:

fexcit;jðqÞ ¼ fexcit;jbexpð�ajq2Þ þ bjq2 expð�cjq2Þc; ð9aÞ

fioniz;jðqÞ ¼ fioniz;j

1�
Pexcit

j
fexcit;jðqÞ

1�
Pexcit

j
fexcit;j

; ð9bÞ

Eioniz;jðqÞ ¼ Eioniz;j þ
q2

2me

½1� expð�cqdÞ�; ð9cÞ

cjðqÞ ¼ cj þ aqþ bq2; ð9dÞ

where the values of the various constants are given in [14].

2.2. The Lindhard dielectric function

The Lindhard dielectric function [9] originally developed
for the free-electron gas has been widely used to model the
response of the conduction electrons of metals and, in gen-
eral, of the weakly bound electrons of nearly-free-electron
materials [8]. In its standard form it reads:

eLðx; kÞ ¼ 1þ x2

z2
½f1ðu; zÞ þ if2ðu; zÞ�; ð10Þ

where x = E/⁄, k = q/⁄, u = x/(ktF), z = k/(2kF), x2 = e2/
(p⁄tF), and kF = metF/⁄(tF and kF are the Fermi velocity
and wavenumber, respectively). The functions f1(u,z) and
f2(u,z), which relate to the real and imaginary parts of the
Lindhard dielectric function eL, are given by:

f1ðu; zÞ ¼
1

2
þ 1

8z
½gðz� uÞ þ gðzþ uÞ�; ð11aÞ

f2ðu; zÞ ¼

p
2

u; zþ u < 1

p
8z ½1� ðz� uÞ2�; jz� uj < 1 < zþ u

0; jz� uj > 1

;

8><
>: ð11bÞ

where g(x) = (1 � x2)ln j(1 + x)/(1 � x)j.
Connection with the optical-data model is made by the

fact that at the optical limit (q = 0) the Lindhard-ELF
corresponds to a Drude-type function, that is, Im[�1/
eL(E,q = 0;Cj, Xj)] = D(E, Cj, Xj), which may be used to
fit the experimental optical data using Eq. (1). It should
be noted that the Lindhard function provides an auto-
matic extension to the momentum space, thus overcom-
ing the need for any empirically derived dispersion
expressions.
2.3. The single-pole and d-oscillator approximations

In the single-pole approximation, the Lindhard dielec-
tric function and its associated ELF read [24]:

eLðE; q; EpÞ ¼ 1þ
E2

p

E2
q � E2

p � EðE þ icqÞ
; ð12Þ

Im
�1

eLðE; q; EpÞ

� �
¼ E2

p

cqE

E2
q � E2

� �2

þ ðcqEÞ2
; ð13Þ

where Ep is the plasmon frequency obtained from the elec-
tron density, Eq is the dispersion line of a single pole and cq

is the damping constant. In the limit cq?0, Eq. (13) be-
comes a d-function:

lim
cq!0

Im
�1

eLðE; q; EpÞ

� �
¼ p

2

E2
p

Eq
dðE � EqÞ: ð14Þ

As shown by Penn [6] the ELF may be expressed by the fol-
lowing integral:

Im
�1

eðE; qÞ

� �
¼ 2

p

Z 1

0

Im
�1

eðEp; 0Þ

� �
Im

�1

eLðE; q; EpÞ

� �
dEp

Ep

:

ð15Þ

Then, using the undamped single-pole approximation of
the Lindhard function (Eq. (14)), we may recast Eq. (15)
in the form:

Im
�1

eðE; qÞ

� �
¼
Z 1

0

Im
�1

eðEp; 0Þ

� �
dðE � EqÞ

Eq
EpdEp; ð16Þ

where Penn [6] has suggested the following dispersion
relation:

E2
q ¼ E2

P þ
4

3
EF ðq2=2meÞ þ ðq2=2meÞ2; ð17Þ

where EF is the Fermi energy. An equivalent expression to
Eq. (16) has been formally derived by Fernandez-Varea
et al. [8] starting from the more general case of a d-function
expansion of the optical-oscillator-strength. Extension to
the q-space may then be provided by an integral over the
so-called ‘‘d-oscillator” defined as d(E � F(E0;q)) or, sim-
ply, as d(E � E0(q)). A d-oscillator representation of the
ELF reads:

Im
�1

eðE; qÞ

� �
¼
Z 1

0

Im
�1

eðE0; 0Þ

� �
dðE � E0ðqÞÞ

E
E0dE0: ð18Þ

Ashley [7] has proposed a pure quadratic dispersion (simi-
lar to Eq. (3b)):

E0ðqÞ ¼ E0 þ q2

2me

ð19Þ

which resembles the plasmon dispersion of the free-electron
gas for small-q, while asymptotically leading to the
Bethe-ridge at large-q. It should be noted that the use of
a d-function in Eqs. (16) and (18) greatly simplifies the
computational effort for the calculation of subsequent
quantities (e.g. inelastic and stopping cross sections). The



Fig. 1. The energy loss function (ELF) of condensed water for a fixed
value of momentum transfer: (a) q = 1.50 a.u. or k = 2.84 Å�1 and
(b) q = 3.02 a.u. or k = 5.71 Å�1. Comparison of experimental IXS data
for liquid water [18] and model calculations with several extended-optical-
data dielectric models (see text). R&H stands for the Ritchie and Howie
model, FED for the fully-extended-Drude model and Ia, Ih for amorphous
and hexagonal ice, respectively.
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similarity of the Penn and Ashley models becomes more
obvious when Eqs. (16) and (18) are recast in the form:

Im
�1

eðE; qÞ

� �
Penn;Ashley

¼ E0

E
Im

�1

eðE0Þ

� �
; ð20Þ

where E0 is the positive solution of the dispersion relation
E(q,E0) = E (Eqs. (17) and (19)). Recent applications of the
Penn and Ashley models include those of Ziaja et al.
[25,26], Tan et al. [27], Tanuma et al. [28], Yue et al. [29],
Ding et al. [30], Dapor et al. [31] and Pimblott and LaVerne
[32].

2.4. The Mermin dielectric function

The Mermin dielectric function [11] improves upon the
Lindhard function in that the finite width of the plasmon
peak (i.e. the finite plasmon lifetime) is consistently
accounted for and, therefore, a more realistic extension
to the momentum space is provided. The Mermin dielectric
function eM may be written in terms of the Lindhard dielec-
tric function eL as follows [33]:

eMðE; qÞ ¼ 1þ ð1þ ic�h=EÞ eLðE þ ic; qÞ � 1½ �
1þ ðic�h=EÞ eLðE þ ic; qÞ � 1½ �=½eLð0; qÞ � 1� ;

ð21Þ

where the c coefficient is associated with plasmon damping.
Similar to the Lindhard model, a connection to the optical
data may be made through the equivalence of a Mermin-
ELF and a Drude function at the optical limit (q = 0).
Also, likewise the Lindhard function, the advantage of
using the Mermin function lies in that it provides automat-
ically and in a consistent way the extension to the momen-
tum space [11]. Recent applications of the Mermin function
to the study of energy loss of swift charged particles in
materials with different dielectrical properties may be
found in the work of Garcia-Molina, Abril and co-workers
[10,34–36].

3. Results and discussion

Since all dielectric models examined practically coincide
at the optical limit (leading to a Drude-type optical-ELF),
it is of interest here to compare their predictions with
respect to the momentum dependence of the ELF which
is the essential input in the construction of the Bethe sur-
face. A Drude-type parameterization of the experimental
optical data of liquid and solid water (hexagonal and
amorphous ice) has been presented in detail elsewhere
[14,16] and briefly discussed here following Eq. (6). In the
absence of an established band structure model for both
liquid water and water ice, a number of approximations
had to be adopted in the deconvolution of the optical spec-
trum to its various electronic channels. The number and
type of excitation levels and ionization shells were deduced
by the analysis of Kutcher and Green [37] which is based
on a molecular-orbital picture of the liquid. However, in
view of recent experimental findings [38], the plasmon
channel introduced by Kutcher and Green is neglected
here. The binding energies for ionization were deduced
by lowering the corresponding gas phase values by �1–
2 eV in accordance with recent photoionization experi-
ments [39]. The excitation threshold, which corresponds
to the onset of photoabsorption, was loosely associated
with the band gap since the extrapolation of the experimen-
tal optical data to threshold may entail a relatively larger
uncertainty. The band gap values chosen (7–8 eV) fall
somewhere in the middle of the theoretical and experimen-
tal values found in the literature which vary between about
6 and 12 eV [40–43]. Finally, the adoption of the same band
structure characteristics for the liquid and solid phases in
terms of number and type of transitions and ionization
thresholds, is also a reasonable approximation given that
the same molecular orbitals persist in both phases, while
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the difference in the ionization potentials is less than 1 eV
(those of ice being higher) and, generally, well within their
associated uncertainties [39]. The above assumptions are
expected to have a minimal effect in the present calcula-
tions given that the actual (experimental) optical spectrum
for each form of water has been used as input in the
extended-optical-data model.

Fig. 1 presents the ELF distribution of condensed water
at two finite values of momentum transfer (q = 1.50 and
3.02 a.u.; i.e. k = 2.84 and 5.71 Å�1) as obtained from the
dielectric models examined and the experimental IXS data
for liquid water [18] which are reported to have insignifi-
cant uncertainties. The FED model calculations [14,16]
pertain to both the liquid and solid phase (same dispersion
formulae for both phases but different optical data)
whereas all other calculations are limited to the liquid
phase. As expected, differences between the three forms
of condensed water are small and decrease with momentum
transfer. With respect to the Ritchie and Howie model [5]
we have used its most popular version with the simple qua-
dratic dispersion relation of Eq. (3). Good agreement with
the experimental data is observed only in the case of the
Mermin [11] and FED models [14,16]. In particular, the
more consistent account of plasmon damping in the Mer-
min function provides a notable improvement over the ori-
ginal Lindhard function [9]. On the other hand, the
relatively simple dispersion formulae adopted in the pres-
ent FED model seem also very effective in reproducing
Fig. 2. The Bethe surface of liquid water as determined experimentally by IX
dielectric models (see text).
the experimental data while retaining the convenience of
working with the Drude function. As noted by Kuhr and
Fitting [44] and also confirmed here, the dispersion of the
damping-coefficient (Eq. (9d)) provides the expected
momentum broadening of the Bethe ridge and results in
a notable improvement over earlier extended-Drude mod-
els. Moreover, the modified-quadratic dispersion used for
the energy-coefficient (Eq. (9c)), shifts the position of the
peak to lower energy transfers in better agreement with
the experimental data than the pure-quadratic dispersion
of the Ritchie and Howie [5] and Ashley [7] models Eqs.
((3) and (19)). A similar effect is also evident in the Penn
model [6] which also adopts a weaker momentum disper-
sion (Eq. (17)). Interestingly, the ELF predicted by the
Penn and Ashley models quickly vanishes in the energy
transfer range below the peak due to the negative values
of E0 (of Eq. (10)) in this range.

Fig. 2 presents the Bethe surface of liquid water as pre-
dicted by the Mermin [11], Ritchie and Howie [5] and FED
[14] models. The experimental Bethe surface [18,45]
obtained from the IXS measurements is also presented
for comparison. As expected from Fig. 1(a),(b) the Mermin
and FED models reproduce fairly well the experimental
Bethe surface over the whole energy–momentum plane,
whereas the Ritchie and Howie model does not exhibit
the observed broadening of the Bethe ridge (this is also true
for the Lindhard, Penn and Ashley models). It is evident
that the momentum broadening effect cannot be repro-
S measurements [18,45] and calculated by different extended-optical-data



Fig. 3. The excitation part of the Bethe surface of liquid water and water ice (in amorphous and hexagonal form) as determined by the fully-extended-
Drude (FED) model [14,16].

Fig. 4. The ionization part of the Bethe surface of liquid water and water ice (in amorphous and hexagonal form) as determined by the fully-extended-
Drude (FED) model [14,16].
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duced by any type of energy-dispersion relation alone and
some type of a damping-dispersion also needs to be
invoked [46,47].

In contrast to most dielectric models which use a transi-
tion-invariant form of dispersion [48], the FED model
allows us to distinguish in a consistent way between the
excitation and ionization parts of the ELF. In Figs. 3
and 4 we present the excitation and ionization parts of
the Bethe surface of liquid and solid water as predicted
by the FED model (notice the different scale on the vertical
axis between excitations and ionizations). The expected
damping of the discrete transitions and the concomitant
evolution of the Bethe ridge for the continuum is evident
in all three forms of condensed water. With increasing
momentum transfer the low energy excitation peaks vanish
quickly whereas the main absorption peak falls rapidly but
does not vanish leading to a broadened Bethe ridge which
is gradually displaced at higher values of energy transfer.
Differences between the three forms of water are sizeable
only for the excitation part since the Bethe ridge (ionization
part) is largely indifferent to the details of the electronic
structure.

The broadening of the Bethe ridge observed experimen-
tally for both liquid [45] and gaseous [49] water as well as
other materials [50] is also consistent with the theoretical
expectation that single-particle excitations should gradu-
ally prevail over collective excitations with increasing
momentum transfer. In fact, using the Lindhard dielectric
function one may calculate exactly the critical value of
momentum transfer where the sharp plasmon peak is
strongly damped by single-particle excitations leading to
a momentum-broadened spectrum [33]. Recently, two stud-
ies have examined the effect of Bethe ridge characteristics
on low-energy electron inelastic cross sections (and associ-
ated quantities) and shown to be sizeable [51,52].
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