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The inelastic mean free path (IMFP) of electrons with energies up to a few keV is calculated from the dielec-
tric electron-gas theory for densities corresponding to those of biological matter. The effect of the many-
body local-field correction on the Lindhard dielectric response function is examined using some of the avail-
able analytical approximations to its static limit. We have tested the performance of several Hubbard-type
local-field corrections along with the formula proposed by Corradini and co-workers [M. Corradini, R. Del
Sole, G. Onida, M. Palumno, Phys. Rev. B 57 (1998) 14569] which is extensively used in connection with
the exchange-correlation kernel of time-dependent density functional theory. It is shown that the Lindhard
dielectric function provides reasonable estimates of electron IMFPs below about 50 eV, where the majority
of semi-empirical dielectric calculations based on the extended-optical-data methodology fail. The use of
LFC results in a sizeable reduction of the IMFP which, at low energies, may reach �20%.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Electron inelastic scattering in condensed matter plays a funda-
mental role in many applied fields ranging from material and sur-
face science to medical physics. Perhaps the single most important
quantity is the electron inelastic mean free path (IMFP), which rep-
resents the mean distance between successive inelastic collisions.
For example, in surface sensitive techniques, such as X-ray photo-
electron spectroscopy (XPS) or Auger-electron spectroscopy (AES),
IMFP is an indispensable input parameter for the quantitative
interpretation of the results [1]. On the other hand, since secondary
electrons represent the main source of radiation damage following
X-ray (or charge particle) irradiation, knowledge of electron IMFPs
is an essential step towards predicting radiation effects in both liv-
ing and non-living matter [2,3]. Finally, IMFPs are important in the
study of hot-electron lifetimes and transport in electronic devices
under high-electric fields [4].
All rights reserved.
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In the above applications, IMFP needs to be known over a broad
range of electron energies, typically, from several keV down to the
band-gap energy (or the Fermi energy for metals). However, in this
low-energy range Bethe’s optical approximation (essentially a
high-energy approximation) becomes gradually invalid and, there-
fore, the momentum-dependent dielectric response function
should be used. Lindhard [5] was the first to provide an analytic
expression for the dielectric response function of the homogeneous
electron-gas (HEG) within the so-called random-phase-approxi-
mation (RPA). For realistic materials, however, first-principle cal-
culations of their dielectric response function are complicated
because they involve a description of their band-structure [6–9].

Presently, the most practical approach to IMFP calculations
which combines low computational effort and reasonable accuracy,
and is applicable over a wide electron range and to any type of mate-
rial (metal, semiconductor, insulator), is the extended-optical-data
methodology [10,11]. In this approach one uses experimental ‘‘opti-
cal” data (i.e. at zero momentum-transfer) to first describe the
dependence of the dielectric function on energy transfer and subse-
quently implements an ‘‘extension” (or dispersion) scheme to incor-
porate the dependence on momentum-transfer. The method has

mailto:appsp@uohyd.ernet.in
mailto:iba2007@uohyd.ernet.in
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb


46 D. Emfietzoglou et al. / Nuclear Instruments and Methods in Physics Research B 267 (2009) 45–52
been extensively used by many groups [12–18] to a variety of solids,
including materials of biological interest [19–26]. There are gener-
ally two main problems with this methodology: (i) optical data are
not always available or cover only a limited energy-loss range (this
is especially true for biological materials) and (ii) due to the scarcity
of experimental data beyond the optical limit (i.e. for finite momen-
tum-transfer), the extension schemes used are often based on vari-
ous simplifications of the Lindhard dielectric function (e.g.
plasmon-pole approximation). The above issues become critical
with decreasing electron energy where the IMFP becomes more
and more sensitive to details of the dielectric response function.
Hence, the extended-optical-data method is generally not consid-
ered trustworthy below 50–100 eV. On the other hand, first-princi-
ple calculations although more reliable are far less practical and,
therefore, limited to very low energies (below �20 eV) [7].

Despite being originally developed for the HEG, the Lindhard
dielectric function often performs reasonably well in materials
with a well-defined plasmon-like peak in their energy-loss spec-
trum [27]. Moreover, it has the advantage of automatically provid-
ing the extension to finite momentum-transfers, while being free
of any empirical (or adjustable) parameters; the only material in-
put needed is trivially obtained from the bulk electronic density
of the material. Corrections to the Lindhard dielectric function
are, in practice, of two kinds, namely, the (static) many-body lo-
cal-field correction (LFC) for short-range exchange-correlation ef-
fects and damping corrections due to plasmon’s finite lifetime. It
should be noted that damping is a natural outcome of a dynamic
LFC theory. In the present study, we use the full Lindhard dielectric
function to calculate electron IMFPs for electron-gas densities rep-
resentative of biological materials. The influence of the LFC is
examined through the application of several widely used analytic
approximations for its static limit. As a first approximation (and
consistent with a static-LFC) damping effects are neglected to all
orders. Comparisons are made against recent experiments and
semi-empirical calculations.
2. Methodology

2.1. Inelastic mean free path (IMFP)

In the plane-wave first-Born approximation the IMFP (k) of a
non-relativistic electron of kinetic energy T is given by:

kðTÞ ¼ paoTR
dE
R

Im½�1=eðE; qÞ�q�1dq
; ð1Þ

where Im[�1/e(E,q)] is the imaginary part of the inverse dielectric
response function (the so-called energy-loss-function, ELF), q and
E are the momentum and energy transfer in the inelastic collision,
respectively, and ao is the Bohr radius (0.0529 nm). The inelastic
cross section in the conventional microscopic units of area per scat-
tering center is simply r = 1/(nk), where n is the density of scatter-
ing centers. A homogeneous and isotropic medium is assumed
throughout, so q is a scalar quantity. The limits of integration are
q� ¼

ffiffiffiffiffiffiffi
2m
p

ð
ffiffiffi
T
p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
T � E
p

Þ where m is the electron rest mass and Emin

= EG, Emax = (T + EG)/2 where EG is the band-gap energy. An analytic
approximation to Eq. (1) is provided by Bethe’s asymptotic expan-
sion in powers of 1/T which reads [28]:

kBetheðTÞ ¼
T

A ln T þ Bþ CT�1 þ OðT�2Þ
; ð2Þ

where the coefficients A, B and C are properties of the materials.
Most importantly, the coefficient of the leading term (A) depends
only on the optical limit of the ELF, i.e. A / Im½�1=eðE; q ¼ 0Þ�which
may be readily obtained from experiments. This realization is the
basis of Bethe’s high-energy (or optical) approximation: kBetheðTÞ
� T=ðA ln TÞ. Analytic expressions of the form of Eq. (2) with adjust-
able material-dependent coefficients have been successfully used in
fitting numerical results obtained from Eq. (1), most notable per-
haps is NIST’s predictive TPP formula [29].

2.2. The Lindhard dielectric function

Within a self-consistent time-dependent Hartree approxima-
tion (i.e. RPA) Lindhard [5] obtained an analytic expression for
the dielectric function of the HEG which describes both single-par-
ticle (e.g. electron–hole pairs) and collective (plasmon) excitations.
The Lindhard dielectric function accounts only for long-range cor-
relation and, therefore, is exact only at the high-density limit
(n!1). If we write:

eLðE; qÞ ¼ 1þ Q0ðE; qÞ ¼ 1þ Q R
0ðE; qÞ þ iQ I

0ðE; qÞ; ð3Þ

where ReeLðE; qÞ ¼ 1þ QR
0ðE; qÞ and ImeLðE; qÞ ¼ QI

0ðE; qÞ are the real
and imaginary parts of the Lindhard dielectric function (the sub-
script ‘‘0” denotes treatment at the RPA level), then the correspond-
ing ELF reads:

Im
�1

eLðE; qÞ

� �
¼ Q I

0ðE; qÞ
½1þ QR

0ðE; qÞ�
2 þ ½QI

0ðE; qÞ�
2 : ð4Þ

In notation convenient to the present study we can write:
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and

Q I
0ðE; qÞ ¼
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where Ry is the Rydberg constant (13.6 eV). The variables E and q in
the right-hand-side of Eqs. (5) and (6) are, for compactness, ex-
pressed in units of the Fermi energy (EF) and momentum (qF),
respectively. An important characteristic of the above expressions
is that the only material property used is the electronic density
(n) of the material through qF ¼ �hðarsaoÞ�1 and EF = (ars)�2 Ry where
rs ¼ ð4pn=3Þ�1=3

=ao is the dimensionless electron-gas density
parameter (or one-electron radius) and a = (4/9p)1/3 = 0.521.

The Lindhard dielectric function assumes an infinite plasmon
lifetime (or zero plasmon linewidth). Thus, the plasmon excitation
is represented by a Dirac delta function at the resonance energy
Ep ¼ ð12=r3

s Þ
1=2Ry which, for q below some critical value qc, shifts

with momentum-transfer along a dispersion line Ep obtained by
the condition ReeL(E,Ep(q)) = 0. The value of qc corresponds to the
point where the plasmon dispersion line intersects the upper
boundary of the single-particle region (see last condition in Eq.
(6)). For q > qc the plasmon vanishes (zero lifetime) due its decay
into electron–hole pairs. Thus, for electron energies below about
twice (due to the Pauli principle) the plasmon energy, only elec-
tron–hole pairs contribute to eL(E,q). This is an oversimplification
for real materials which exhibit a finite plasmon linewidth for all
q. Nevertheless, the Lindhard dielectric function is known to de-
scribe reasonably well the response of valence electrons in
nearly-free-electron-like materials.
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2.3. Local-field correction (LFC)

The many-body LFC (not to be confused with the crystal-LFC) is
meant to account for short-range Coulomb-correlation and spin-ex-
change that are neglected in the RPA and which result in a local deple-
tion of electron density around each screening electron (the so-called
exchange-correlation hole). Then, the following expression would hold
for the dielectric function of an interacting electron system [30]:

eðE; qÞ ¼ 1þ ½eRPAðE; qÞ � 1� � f1� GðE; qÞ½eRPAðE; qÞ � 1�g�1
; ð7Þ

where G(E,q) is the LFC which, in general, is a complex-value func-
tion depending on both the energy- and momentum-transfer. The
imaginary part arises from the energy-dependence and leads to
damping. Given the complexity of a dynamic treatment, we pres-
ently restrict our study to static-LFCs, i.e. we ignore the energy-
dependence by assuming that ImG(E,q) = 0 and G(E,q) = ReG(0,q)
= G(q). Due to the weak energy-dependence of the LFC up to about
twice the plasmon energy [7], the use of its static limit in IMFP cal-
culations should be considered reliable at least up to �100 eV elec-
tron energies (since Emax � T/2 in Eq. (1)). In the present study,
where the systems examined are approximated by a HEG we also
set eRPA(E,q) = eL(E,q) in Eq. (7). Then, following the notation of the
previous paragraph we can write:

eðE; qÞ ¼ 1þ Q 0ðE; qÞ
1� GðqÞQ 0ðE; qÞ

ð8Þ

and

Im
�1

eðE; qÞ

� �
¼ Q I

0ðE; qÞ
f1þ ½1� GðqÞ�QR

0ðE; qÞg
2 þ f½1� GðqÞ�Q I

0ðE; qÞg
2 :

ð9Þ

Since the ‘‘exact” evaluation of the LFC is not possible (as this would
involve solving the many-body problem), we can only hope for reli-
able yet tractable approximations. The importance of the LFC in
understanding electron–electron interactions in condensed matter
and, as a result, the excitation spectrum of materials, has resulted
in a rich literature on the subject since the pioneering work of
Hubbard in the late-50 s [31]. Having a closed-analytic form for
G(q) is particularly convenient for IMFP calculations through Eq.
(1). Therefore, in the present study we have chosen to compare
the performance of some widely used Hubbard-type LFCs which
have a simple mathematical form, along with a more elaborated
expression currently employed in many time-dependent density
functional theory (TDDFT) calculations.

The first evaluation of G(q) was made by Hubbard [31] who ob-
tained by a diagrammatic technique a very simple approximation
for the exchange correction while neglecting the correlation contri-
bution. The Hubbard exchange-only LFC reads:

GHðqÞ ¼
q2

2ðq2 þ q2
F Þ
: ð10Þ

In the literature, two alternative expressions are most often
encountered. The Geldart and Vosko [32] modification consists in
doubling the screening term so that the ‘‘exact” exchange-only
LFC (within Hartree-Fock) at the limit n ?1 (or rs ? 0) is
obtained:

GGVðqÞ ¼
q2

2ðq2 þ 2q2
F Þ
: ð11Þ

Another popular modification consists in adding an inverse screen-
ing length squared (q2

s ) in the denominator of Eq. (10) which would
formally result if a screened (instead of a ‘‘bare”) Coulomb potential
is used in the Hartree-Fock evaluation of G(q). Most often, this is ex-
pressed in terms of the Thomas-Fermi screening length, i.e. q2
s ¼ fq2

TF

where f is a constant to be determined and q2
TF ¼ 4qF=pao. Here we fol-

low Rice [33] and set f = 1, so, the screened-exchange-only LFC reads:

GRðqÞ ¼
q2

2ðq2 þ q2
F þ q2

TFÞ
: ð12Þ

Eqs. (10)–(12) are meant to account only for the exchange-hole
around each electron arising from Pauli’s principle. Kleinman [34]
and Langreth [35] showed that, in the static limit, the Coulomb-
hole arising from short-range correlation may be accounted for
using an expression similar to Eq. (12). Assuming again that f = 1,
the Kleinman–Langreth exchange-correlation LFC reads:

GKLðqÞ ¼
q2

4½ðq2 þ q2
F þ q2

TFÞ þ ðq2
F þ q2

TFÞ�
: ð13Þ

The Hubbard-type LFCs presented above are the ones most rep-
resented in the literature, although there seems to be no agree-
ment as to the exact value of the parameter f or, more general,
what this screening length should be. More refined analytic models
do exist [36,37], but this comes generally with the expense of loos-
ing the mathematical simplicity of the Hubbard-type expressions.
Interest in LFCs has been revived since the advent of TDDFT. This
is because the calculation of electronic excitations within TDDFT
crucially depends upon the availability of good approximations
for the exchange-correlation (xc) kernel fxc(E,q) of the HEG which
is directly related to the LFC through [38]:

GðqÞ ¼ � q2

4p
fxcðE ¼ 0; qÞ: ð14Þ

At present, the most reliable analytic expressions for fxc are consid-
ered those obtained from a parametrization of Quantum Monte-Carlo
(QMC) data [39]. Among several such expressions, perhaps the most
widely used in TDDFT calculations [40–43] is the CDOP formula [44]
which provides an accurate representation of the latest QMC data of
Moroni and co-workers [45] while also exhibiting the proper asymp-
totic behavior. It is also relatively simple which makes it very conve-
nient for use in subsequent calculations of the type undertaken
here. The CDOP expression for the exchange-correlation LFC reads:

GCDOPðqÞ ¼ CðrsÞ
q
qF

� �2

þ BðrsÞq2

cðrsÞq2
F þ q2

þ aðrsÞ
q
qF

� �4

exp �bðrsÞ
q
qF

� �2
" #

: ð15Þ

Similar to the Hubbard-type expressions, Eq. (15) is a function of
a single variable, namely, the electron density n which enters
through the dimensionless coupling constant rs. The other parame-
ters relate to the asymptotic limits of G(q) at small- and large-q.
Keeping the same symbols with [44,45], a ¼ 1:5A=ðBcr1=4

s Þ, b = 1.2/
(Bc) and c = B/(A�C), where the A, B and C are found through:

lim
q!0

GðqÞ ¼ AðrsÞ
q
qF

� �2

; ð16aÞ

lim
q!1

GðqÞ ¼ CðrsÞ
q
qF

� �2

þ BðrsÞ: ð16bÞ

The ‘‘exact” expressions for the above coefficients are [46]:

AðrsÞ ¼
1
4
� 1

24
4p2

9

� �1=3

r3
s

d2EcðrsÞ
dr2

s

� 2r2
s

dEcðrsÞ
drs

" #
; ð17aÞ

CðrsÞ ¼ �
p

2qF

d
drs
½rsEcðrsÞ�; ð17bÞ

BðrsÞ ¼
2
3
½1� gðr ¼ 0Þ� þ 48
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d4 �
16
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2Þ; ð17cÞ



Fig. 1. Real and imaginary parts of the dielectric function of condensed-water and
solid-DNA for different values of momentum-transfer calculated from the Lindhard
dielectric function for density parameters rs = 1.69 and rs = 1.58, respectively.
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where Ec is the correlation energy per electron in a.u., g(r) is the
pair-distribution function for the HEG, that is, the probability of
finding a pair of electrons at distance r from each other, d2 denotes
the fractional change of the average electron kinetic energy due to
correlation and d4 is the same for the squared kinetic energy. The
most accurate evaluation of Ec is also obtained from QMC calcula-
tions. In the present study, we use the Perdew-Zunger (PZ) param-
etrization [47] which provides the best available fit to the QMC data
of Ortiz and Ballone [48]. The PZ expression in the present density
range (rs > 1) reads (Ec in a.u.):

EcðrsÞ ¼ cð1þ b1
ffiffiffiffi
rs
p
þ b2rsÞ�1

; ð18Þ

where c = �0.103756, b1 = 0.56371 and b2 = 0.27358. From Eq. (18),
the evaluation of Eqs. (17a) and (17b) follows in a straightforward
manner. With respect to Eq. (17c), although reliable and simple
expressions for both g(r = 0) and d2 are available, the evaluation of
d4 is particularly problematic since, being a second moment value,
it is more sensitive to the details of electron correlation. It is there-
fore customary to obtain the parameter B(rs) from a fit to QMC data
as well. The expression suggested in [45] reads:

BðrsÞ ¼
1þ a1xþ a2x3

3þ b1xþ b2x3 ; ð19Þ

where x ¼ ffiffiffiffi
rs
p

, a1 = 2.15, a2 = 0.435, b1 = 1.57 and b2 = 0.409. Calcu-
lations with the CDOP formula are then performed by inserting Eqs.
(17a), (17b), (18) and (19) in Eq. (15).

3. Results and discussion

The only material parameter needed as input for the present
calculations is the dimensionless electron-gas density parameter
rs = (4pn/3)�1/3/ao or, after substituting the various constants,
rs = (16.1 � 1023/n)1/3 where n is the electron density. For inelastic
scattering calculations, it is customary to divide the electronic sub-
system of the material into valence and inner shells. The valence-
shell electrons with typical binding energies less than �100 eV
are assumed to exhibit an ‘‘electron-gas” behavior whereas the in-
ner shells are assumed to retain their atomic character. In this rep-
resentation, the value of n should be calculated based on the
number of valence electrons only. In order to avoid an independent
estimate of the inner shell contribution, a brute-force application
of the electron-gas theory to all electrons in the system is also em-
ployed. This approximation should suffice for a comparative anal-
ysis between different LFC representations. Moreover, for
biological materials where the number of inner shell electrons is
relatively small compared to the total number, the error in the
absolute magnitude of the IMFP is shown to be generally less than
�10%. In Table 1, we present the material parameters used in the
present calculations.

In Fig. 1, we present for different values of momentum-transfer
the real and imaginary parts of the dielectric response function of
liquid water and solid-DNA. The calculations of Fig. 1 are based on
Eqs. (5) and (6) where ReeLðE; qÞ ¼ 1þ Q R

0ðE; qÞ and ImeLðE; qÞ ¼
QI

0ðE; qÞ. In Fig. 2, the corresponding ELFs for the two materials
Table 1
Material parameters for water (H2O), DNA (C20H27N7O13P2 or C19H26N8O13P2) and
PMMA (C5H8O2) used in the present electron-gas calculations. Values in the
parenthesis correspond to valence electrons only.

Water DNA PMMA

Mass density (q) in g/cm3 1 1.35 1.19
Electron density (n) in cm�3 (�1023) 3.34 (2.67) 4.12 (2.97) 3.86 (2.86)
One-electron radius (rs) 1.69 (1.82) 1.58 (1.76) 1.61 (1.78)
Plasmon energy (Ep) in eV 21.4 (19.2) 23.8 (20.2) 23.1 (19.8)
Fermi energy (EF) in eV 17.5 (15.1) 20.2 (16.2) 19.3 (15.8)
are presented as calculated from Eqs. (3)–(6) for several values of
momentum-transfer. For the smallest momentum-transfer
(q = 0.5 a.u.), one can recognize the sharp plasmon peak at the res-
onance energy predicted by the RPA dispersion relation which, up
to 2nd order in q, reads: EpðqÞ ¼ Epðq ¼ 0Þ þ 1:276r�1=2

s q2Ry (E and
Ry in eV; q in a.u.). For q = 0.5 a.u., the plasmon energies are about
24.8 eV and 27.3 eV for water and DNA, respectively. The plasmon
contribution to the ELF, although formally being a Dirac delta func-
tion, can be practically reproduced by expanding (as a power series
in q) ReeL(E,q) about the plasmon energy and taking ImeL(E,q) to be
a very small number. For the higher values of q depicted in Fig. 2,
the plasmon peak vanishes due its decay into single-particle exci-
tations. Mathematically, this trivially follows from the condition
Ep(q) < q2Ry + 2q(EFRy)1/2 of Eq. (6). In more advanced theories
[50], the plasmon peak never vanishes, but simply broadens with
increasing q. In the case of liquid water, the momentum broaden-
ing of Im[�1/e(E,q)] has been considered only recently via the
Mermin modification of Lindhard dielectric function [51], or by
implementing a momentum-dependent damping coefficient in an
extended Drude dielectric model [51,52]. Both descriptions are
shown to substantially improve the agreement with experimental
data at finite momentum-transfer [51,52].

The dependence of the LFC on momentum-transfer is presented
in Fig. 3 for the different models examined (see Eqs. (10), (11), (12),
(13), and (15)). All models exhibit a common trend at very small q
which, following Eq. (16a), corresponds to the theoretically ex-
pected asymptotic limit Gðq! 0Þ � q2. However, with increasing
q a different behavior is observed depending on whether correla-



Fig. 2. Energy-loss-function (ELF) for different values of momentum-transfer
corresponding to the dielectric functions of Fig. 1.
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tion is considered. Specifically, the models that account for ex-
change-only (H, GV, R) reach a plateau and asymptotically ap-
proach the value Gðq!1Þ � 1=2. On the other hand, the models
that account for both exchange and correlation (KL and CDOP) ex-
hibit a continuous rise. As can be seen from Eq. (17b), when corre-
lation is taken into account the parameter C takes a non-zero value
leading to the high-q asymptotic limit Gðq!1Þ � q2.

In Fig. 4, the momentum-dependence of the ELF for the different
LFC models is presented. The influence of the LFC is sizeable result-
ing in the enhancement of the ELF spectrum at small energy-losses.
This is due to a lower dispersion coefficient compared to the RPA
Fig. 3. Static local-field-correction (LFC) as function of momentum-transfer for the
various models considered (H: Hubbard, GV: Geldart and Vosko, R: Rice, KL:
Kleinman and Langreth, CDOP: Corradini, Del Sole, Onida, Palumno).

Fig. 4. Momentum-dependence of the ELF for the different LFC models presented in
Fig. 3 plus the Lindhard ELF (L).
value: aLFC ¼ aRPA � 0:470r1=2
s ALFCðrsÞ where aRPA ¼ 1:276r�1=2

s and
the factor ALFC (rs) for each LFC model is obtained from Eq. (16a).
The effect gradually vanishes with increasing momentum-transfer
since QR

0ðE; qÞ;Q
I
0ðE; qÞ << 1 for large E.

The performance of the Lindhard dielectric function with and
without an LFC, to electron IMFP calculations in materials of bio-
logical interest is examined in Figs. 5 and 6. For a meaningful
comparison, all results presented in the figures are based on the
plane-wave first-Born approximation (Eq. (1)). In Fig. 5, we com-
pare the present calculations using the Lindhard dielectric function
(without LFC), against some other model calculations which are
based on the extended-optical-data dielectric methodology. Re-
sults are shown for liquid water (panel a), DNA (panel b) and



Fig. 5. Electron inelastic mean free paths (IMFP) in (a) condensed-water, (b) solid-DNA and (c) PMMA using various approximations for the dielectric response function. All
calculation results presented are based on the plane-wave first-Born approximation. The experimental data of Michaud et al. [54] are based on high-resolution-electron-
energy-loss-spectroscopy. The e–h and plasmon contribution of the Lindhard dielectric function to the IMFP is explicitly shown. For the e–h contribution calculations are
shown using both the valence and total electron-gas density parameters.

Fig. 6. Effect of different LFC models upon the electron IMFPs in the case of
condensed-water. The notation is the same with Figs. 3 and 4. The inset shows the
difference (in %) with respect to the Lindhard-ELF.
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PMMA (panel c). The plasmon and e–h contribution to the IMFP is
explicitly shown. The magnitude of the e–h contribution based on
the valence electron density is also included. The comparison,
which is by no means exhaustive, is sufficient to provide important
insight upon the effect of the various model approximations
adopted in the calculation of the IMFP in the context of the dielec-
tric methodology. The discussion will be divided into the region
above and below the IMFP minimum (�100 eV).

For energies above the IMFP minimum, the e–h contribution
alone significantly overestimates the semi-empirical IMFP calcula-
tions. The addition of the plasmon contribution brings a substantial
decrease to IMFP which becomes now too small; a consequence of
the assumption of an undamped plasmon in the Lindhard dielectric
function (see also below). The use of the valence electron density
instead of the total electron density causes a �10% increase of
the IMFP. However, in this case the inner shell contribution must
be added independently by some other model calculation which
will cause a corresponding decrease of the IMFP. Therefore the er-
ror made by the brute-force application of the electron-gas approx-
imation is expected to be less than �10%. The overall good
agreement among the semi-empirical dielectric calculations in this
range must be attributed to the use of a experimental ELF data at
q � 0 since they all employ different dispersion schemes for the
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extension of the dielectric response function to finite momentum-
transfer (q > 0). This is in accord to the predictions of the Bethe
asymptote (Eq. (2)) whereby at sufficiently high projectile energies
the IMFP is largely determined by the optical limit of the ELF
(Bethe’s optical approximation).

The situation is different below the IMFP minimum since, at the
low-energy region (<100 eV), the momentum-dependence of the
dielectric response function becomes critical. The plasmon-pole
model used, among others, by the NIST group, gradually deterio-
rates in this range due to its very simplistic dispersion which,
essentially, collapses the whole ELF spectrum to a delta-like peak
with increasing momentum-transfer [49]. In effect, this yields an
ELF spectrum whose width is too narrow and whose height is too
large [51]. The situation is somewhat improved when the Drude-
RPA model is used. In this approximation, the optical-ELF is repre-
sented by a linear combination of Drude-type functions which are
extended to q > 0 by implementing an RPA quadratic dispersion
(but with aRPA = 1). In contrast to the plasmon-pole model though,
the Drude-RPA model does retain some broadened structure for
the ELF at q > 0 through its damping constant (which is not dis-
persed) [51]. Further improvement is obtained by the extended
Drude model of Emfietzoglou and co-workers [51–53] which
empirically accounts for local-field effects and the dispersion of
the damping constant. These improvements lead to momentum
broadening and shifting of the plasmon peak resulting in very good
agreement with the experimental ELF of liquid water at both zero
and finite momentum-transfers [51–53]. With decreasing electron
energy (<50 eV) the IMFP calculated from the Lindhard dielectric
function approaches the more accurate calculations [26] as well
as the experimental HREELS data [54]. This is an important finding
given that below 50–100 eV the majority of semi-empirical dielec-
tric calculations become increasingly inaccurate. The reason for
this is that the semi-empirical dielectric models of the plasmon-
pole or Drude-RPA type essentially neglect the momentum broad-
ening of the ELF. Eventually, at low electron energies, a situation is
encountered where the ELF is either entirely (plasmon-pole mod-
els) or for the most part (Drude-RPA models) outside the integra-
tion limits of momentum-transfer in Eq. (1). Note that the lack of
momentum broadening in the above models is also accompanied
by an incorrect peak position due to the neglect of local-field ef-
fects which further worsens the above situation. In contrast, at
very low electron energies (below about twice the plasmon en-
ergy), the e–h contribution of the Lindhard dielectric function al-
ready provides a reasonable (albeit very simplistic)
representation of the energy-loss spectrum through its broadened
e–h structure. As we have shown recently [51], the effect of damp-
ing can be reasonably accounted in the context of Lindhard theory
by Mermin’s prescription [50] which is expected to further im-
prove the performance of the electron-gas calculations. It is worth
noting that the brute-force application of the electron-gas approx-
imation in the Lindhard calculations, which is clearly invalid for
energies below the inner shell edges (<100 eV), affects the absolute
values of the IMFPs by less than �15% for all materials examined.
Specifically, in the case where the valence electron densities are
being used, the plasmon energies becomes smaller by 1–2 eV caus-
ing an increase of inelastic scattering cross sections at low electron
energies and a corresponding decrease of IMFPs.

In Fig. 6, we show the effect of the examined LFCs upon the elec-
tron IMFPs in the case of liquid water. The LFC reduces the IMFP by
�5–10% above 100 eV and by �10–30 % below 100 eV. The highest
reduction is obtained by the CDOP and original Hubbard models.
Surprisingly, the very simple Hubbard formula leads to almost
identical results (±1–2%) with the more accurate CDOP expression.
It follows that the high-q behaviour of G(q) is practically inconse-
quential to IMFP calculations. The present findings with respect
to the magnitude of the IMFP reduction, are in very good agree-
ment with those of Ashley and co-workers [55] for the case of alu-
minum. Those authors, however, limited their study to the original
Hubbard formula. More recently, using an LFC derived from the lo-
cal-density-approximation (equivalent to Eq. (16a)), Echenique
and co-workers [7] reported a reduction by �20% of hot-electron
lifetimes (and thus IMFP) for energies a few eV above the Fermi le-
vel, in good agreement with our low-energy estimates. Also, in a
comprehensive study on the effect of LFCs upon the electron-gas
stopping-power, Pathak and Yussouff [56] found a small effect
(few %) which agrees with our conclusions above 100 eV. On the
other hand, Penn [57] found that in the 0.2–2 keV electron range
the LFC leads to an increase of the IMFP by 10–20%. However, Penn
used the plasmon-pole approximation and not the full Lindhard
dielectric function in his calculations.

4. Conclusion

The present study shows that the Lindhard dielectric function
which is free from any adjustable parameters may provide reason-
able estimates of electron IMFPs in biological materials below
�50 eV via its e–h contribution. In this very low-energy region
the majority of semi-empirical dielectric calculations based on
the extended-optical-data methodology with an (uncorrected)
RPA dispersion are known to fail. The use of the LFC results in a
sizeable reduction of IMFPs which, for electron energies below
100 eV, may reach �20%. The present calculations can be further
improved by (i) using a dynamic (instead of static) LFC, (ii) adding
corrections to the plane-wave Born approximation and (iii)
accounting for the exchange-hole around both the incident and
scattering electron (related to the so-called vertex corrections). It
is expected that any of the above improvements will decrease
the inelastic scattering cross section and, correspondingly, increase
the IMFP bringing better agreement with experimental data.
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