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a b s t r a c t

The irradiation of biological systems by energetic ion beams has multiple applications in medical physics
and space radiation health, such as hadrontherapy for cancer treatment or protection of astronauts
against space radiation. Therefore, for a better control and understanding of the effects of radiation dam-
age in living tissues, it is necessary to advance an accurate description of the energy loss from the ion
beam to the target. In the present work we use the dielectric formalism to calculate the probability for
an energetic proton to produce electronic excitations in two targets of high biological interest, namely,
liquid water and DNA. Also, the mean energy of the electronic excitations in these targets is found as a
function of the incident proton energy. The electronic response of the target, characterized by its
energy-loss function (ELF), is described by several models that fit the available experimental optical data
(at zero momentum transfer), but use different approaches to obtain the Bethe surface, that is, to extend
the ELF to any energy and momentum transferred.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study of the interaction of ionizing radiation (X-rays, elec-
trons, positrons, protons or heavier ions) with living tissues has a
paramount importance in cancer therapy, since the amount of en-
ergy deposited by the ionizing radiation to tumour cells will deter-
mine the outcome of the treatment [1,2]. Space radiation health is
another area where research on proton and heavier ion effects on
human tissues is important for the radiological protection of hu-
man crew in long-duration deep space missions [3].

The cure of tumours with hadrons (mainly protons and carbon
ions) presents, with respect to the conventional X-ray and electron
therapy, some advantages, from both the biological and physical
point of view. The pattern of energy deposition by hadrons, called
the Bragg peak, is characterized by most of the projectile energy
deposited at the end of its range. In this way the damage to healthy
cells, surrounding the malignant ones to be destroyed, can be
strongly reduced [4–7].

The secondary electrons produced by ionizations induced in the
living tissues by the projectile also contribute to the cellular dam-
age. These electrons are able to travel and produce further ioniza-
tions in the DNA, eventually leading to the cellular death [8]. The

lethal efficiency of each secondary electron depends on its energy
[9,10], therefore it is very important to have information about the
number and energy of the electrons generated by the projectile in
the target. Even electrons with sub-ionizing energy were shown to
produce lethal damage in DNA [9,11,12].

The aim of this paper is the calculation of the energy distribu-
tion of the electronic excitations produced by a proton when mov-
ing inside living tissues. Liquid water and DNA are the most
relevant biological materials, hence we will focus on these materi-
als as targets. Our approach to the problem will be through the
well-known dielectric formalism [13] and a proper description of
the target electronic response.

Several models have been proposed to describe the electronic
response of the targets. Here we adopt the optical data methodol-
ogy which overcomes the inherent shortcomings of Lindhard’s
electron–gas dielectric function to describe the excitation spec-
trum of non-free-electron-like materials with a wide band gap,
such as liquid water and DNA. Different descriptions are examined
for obtaining the complete excitation spectrum at arbitrary values
of momentum transfer (Bethe surface). Furthermore we check
their influence in the calculation of the energy distribution and
the mean energy of the electronic excitations induced by a proton
in liquid water and DNA.

The paper is structured as follows: the theoretical background is
introduced in Section 2, while in Section 3 we present the details of
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the models used to describe the energy-loss function of the target.
Section 4 reviews the main results, and the conclusions are drawn
in Section 5.

2. Theoretical model

When a swift projectile with mass M1, atomic number Z1, ki-
netic energy T and charge q moves inside a solid, it induces elec-
tronic excitations in the material, losing energy in the process. In
the energy range to be discussed in the paper, this energy loss
mechanism is the dominant one. These electronic excitations can
correspond to excitations or ionizations of individual electrons or
even excitations of collective modes in the target electron gas.
The dielectric formalism [13] provides a way of studying the re-
sponse of the electronic system of the target to the perturbation
represented by the projectile. The key parameter of the problem
is a correct description of the dielectric function of the material,
eðk;xÞ, which contains all the information about the electronic
excitations that the material can sustain. Within this framework
the probability per unit path length PqðT; EÞ that a projectile with
charge state q and energy T produces in the target an excitation
of energy E ¼ �hx irrespective of its momentum, �hk, is given by

PqðT; EÞ ¼
M1 e2

p�h2 T

Z 1

kmin

dk
k

q2
qðkÞIm

�1
eðk;xÞ

� �
; ð1Þ

where kmin ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=M1

p
, e is the absolute value of the electron

charge and qqðkÞ is the Fourier transform of the projectile charge
density. Hence, the mean energy lost by the projectile per unit path
length (the so called stopping power or stopping force) can be cal-
culated integrating over all possible energy transfer E

hDTi
Dx

����
q

¼
Z 1

0
dEEPqðT; EÞ: ð2Þ

The mean energy of the electronic excitations hEqðTÞi induced
by the projectile can be written as

hEqðTÞi ¼
R1

0 dEEPqðT; EÞR1
0 dEPqðT; EÞ

: ð3Þ

The charge state q of the projectile inside the target can vary
through capture and loss processes and depends on its energy T.
However, when charge equilibrium is reached, the probability
/qðTÞ of finding the projectile in a charge state remains constant
for each incident energy T. Here we obtain the values of /qðTÞ for
hydrogen projectiles in liquid water or DNA using the parameteri-
zation provided by the CasP code [14], which uses Bragg’s additiv-
ity rule for compound targets.

We average over all possible charge states (q = 0 and 1 for H) in
order to obtain the energy distribution, PðT; EÞ, and the mean en-
ergy, hEðTÞi, of the electronic excitations produced in the target as

PðT; EÞ ¼
X1

q¼0
/qðTÞPqðT; EÞ; ð4Þ

hEðTÞi ¼
R1

0 dEE
P1

q¼0/qðTÞPqðT; EÞR1
0 dE

P1
q¼0/qðTÞPqðT; EÞ

: ð5Þ

It is worth to notice that /0 ¼ 0 for T greater than about 200 keV.
The calculation of the previous magnitudes requires the

description of the projectile charge density through qqðkÞ, and of
the target excitation spectrum by means of its energy-loss function
(ELF), Im½ �1

eðk;xÞ�. The former is accounted for with the model pro-
posed by Brandt and Kitagawa [15] because it is reliable and pro-
vides analytical expressions for qqðkÞ. The latter will be discussed
in the next section.

3. Description of the target ELF

Experimental information about the ELF at k ¼ 0 can be ob-
tained for a number of materials, including liquid water and
DNA, from the measurements of optical magnitudes. However,
experimental information about the ELF at k–0 is limited. For this
reason, it is necessary to model the evolution of the optical ELF
with finite k in order to calculate magnitudes such as P and hEi.
Several models have been proposed to extend the optical ELF at fi-
nite k. Here we study the influence of the models in the calculation
of P and hEi for protons irradiating liquid water and DNA.

Fig. 1 depicts the ELF at k = 0 of liquid water and DNA in a range
of transfer energy E corresponding to the excitation of outer-shell
electrons of both materials. The symbols are experimental data
for liquid water [16] and dry DNA [17]. The solid lines represent
a fitting of the experiments [18,19] using a linear combination of
Mermin-type ELFs [20]. We will extend these optical ELFs to finite
values of k using four different schemes, namely the extended-
Drude model [21], the improved extended-Drude model [22,23],
the Penn model [24], and the MELF–GOS model [25,26]. To unify
further comparisons, a common treatment of the contribution of
inner-shell excitations to the ELF will be done as explained in
[25,26]; therefore, what follows only refers to the description of
outer-shells excitations (unless otherwise started). A brief descrip-
tion of each model is made hereafter.

3.1. Extended-Drude model

In the extended-Drude model [21] the experimental ELF at k = 0
is fitted with a linear combination of Drude-type ELFs:

Im
�1

eðk;xÞ

� �
outer
¼
X

i

AD;i

x2
i

Im
�1

eDðxi; ci; k;xÞ

� �
Hðx�xth;iÞ

¼
X

i

AD;icix

½xiðkÞ�2 �x2
n o2

þ ðcixÞ
2

Hðx�xth;iÞ;

ð6Þ

where the subscript ‘‘D” stands for Drude; AD;i, xi, ci and xth,i are the
intensity, position, width and threshold, respectively, of the Drude-
ELF peaks. Hð:::Þ represents the Heaviside step function.

The extension at k–0 is done through a dispersion term for xi in
the free-electron approximation:

Fig. 1. ELF of liquid water and DNA in the optical limit (k = 0) as a function of the
transferred energy E. Symbols represent experimental data for liquid water [16] and
dry DNA [17], while the curves correspond to a fitting using a linear combination of
Drude-type ELFs.
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xiðkÞ ¼ xi þ
�hk2

2m
; ð7Þ

where m is the electron mass. The above expression has the correct
limiting behaviour at both the optical limit k! 0 and over the
Bethe ridge as k!1.

3.2. Improved extended-Drude model

The model by Emfietzoglou and co-workers [22,23] is an im-
proved version of the simple extended-Drude model described
above. It accounts in a phenomenological way for the shifting
and broadening of the Bethe ridge as observed experimentally
[27] and predicted by local-field corrected electron–gas theory.
The dispersion relations read:

xiðkÞ ¼ xi þ gðkÞ �hk2

2m
; ð8Þ

where gðkÞ ¼ 1� expð�ckdÞ and ciðkÞ ¼ ci þ akþ bk2. For liquid
water and DNA: a = 10 eV, b = 6 eV, c = 1.2 and d = 0.4 (assuming k
in a.u.). Note that the present value of the constant c is somewhat
smaller than previously reported [22] due to the slightly different
Drude parameterization used in the two studies.

3.3. Penn model

Penn proposed a simpler scheme [24] where the sum over a fi-
nite number of Drude-type ELFs is replaced by an integration over
Lindhard dielectric functions [13] of zero width. This integration
yields the following evolution for finite k [28]

Im
�1

eðk;xÞ

� �
outer
¼ x’ðkÞ

x
Im

�1
eðk ¼ 0;x’ðkÞÞ

� �
; ð9Þ

where x’ðkÞ ¼ x� �hk2
=2m. If x’ 6 0, then Im½�1=eðk;xÞ� is set to

zero. In this way, the optical ELF is easily extended to k–0 .

3.4. MELF–GOS model

In the MELF–GOS model [25,26] the ELF due to the outer elec-
trons is modelled by a linear combination of Mermin-type ELFs
[20]. One of the main advantages of this model is that an indepen-
dent description for the dispersion of the optical peaks is not
needed, unlike the previous models. The ELF can be automatically
extended into all the range of k through the analytical properties of
the Mermin-type ELFs

Im
�1

eðk;xÞ

� �
outer
¼
X

i

AD;i

x2
i

Im
�1

eMðxi; ci; k;xÞ

� �
Hðx�xth;iÞ; ð10Þ

where eM is the Mermin dielectric function, which can be expressed
in terms of the Lindhard dielectric function eL as

eMðk;xÞ ¼ 1þ ð1þ ic=xÞ ½eLðk;xþ icÞ � 1�
1þ ðic=xÞ ½eLðk;xþ icÞ � 1�= ½eLðk;0Þ � 1� : ð11Þ

The contribution to the ELF coming from the inner-shell elec-
trons is taken into account in this model using generalized oscilla-
tor strengths (GOS) [29,30] of the target atomic constituents. For
DNA (C20H27N7O13P2), we consider as inner shell the K-shell of C,
N, O and P, while for liquid water we only consider as inner-shell
the K-shell of O. The resulting ELF is constrained to satisfy the
f- and the KK-sum rules for every k [31].

It is important to stress that the Mermin dielectric function
coincides with the Drude dielectric function at k = 0, hence the
same fitting of the experimental ELF at k = 0 is used for all the
above models. As told previously, the extended-Drude, the
improved extended-Drude, and the Penn models only take into
account the ELF corresponding to the excitation of outer-shells,

so for comparison purposes we will use the GOS approach for the
inner-shells in these models.

In order to check the reliability of each model in describing the
ELF at finite k we have compared the calculated ELF with available
experimental results. Using the IXS technique, Watanabe et al. [27]
measured the ELF of liquid water at a few values of k–0. In Fig. 2
we show the experimental values of the ELF of liquid water repre-

Fig. 2. ELF of liquid water at finite k. Symbols are experimental data [27], and lines
represent the results of the different methods used to extend the ELF to finite values
of k: (a) extended Drude (green solid lines) and Penn model (magenta dashed lines),
(b) improved extended-Drude (blue lines) and (c) MELF-GOS (red solid lines). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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sented by symbols compared with the calculations of the ELF using
the different models. Fig. 2(a) corresponds to the extended-Drude
and the Penn models, Fig. 2(b) to the improved extended-Drude
model and Fig. 2(c) shows the results of the MELF–GOS model.
We observe that the first two models, producing almost the same
results, disagree with the experimental ELF. On the other hand,
both the the improved extended-Drude and the MELF–GOS models
provide a much more realistic behaviour of the ELF at k–0 .

4. Results

Fig. 3 depicts the calculated probability per unit path length
P(T,E), Eq. (4), for a proton beam (having incident energies
T = 50 keV, 250 keV and 2.5 MeV) of producing an electronic exci-
tation of energy E in liquid water and DNA. We have included in
the figure the calculations obtained by using the extended Drude
(dashed lines), the improved extended-Drude (dash-dotted lines),
the Penn (dotted lines), and the MELF–GOS (solid lines) models.
We observe that, regardless of the chosen model, for any projectile
energy T there is a maximum of electronic excitations at trans-
ferred energies E around 25 eV. Also we find that the probability
P decreases as the proton energy increases, indicating that a larger
number of electronic excitations are produced when lower inci-
dent energies T are used.

The values of P predicted by all the models agree at large T,
however there are sizeable differences at intermediate and small
T. This is very important because this range of T corresponds to
the Bragg peak, where most of the projectile energy is deposited.
This disagreement is caused by an incorrect description of the

low k electronic excitations in the extended-Drude and Penn
models.

The mean energy hEðTÞi, Eq. (5), of the electronic excitations
produced by a proton in liquid water and in DNA is depicted in
Fig. 4. It is seen that hEðTÞi increases with the proton energy T,
being around 10–20 eV at T = 10 keV and around 70 eV for
T = 5 � 104 keV. As the number of electronic excitations, character-
ized by P(T,E), decreases with T, and the mean energy of the exci-
tation increases with T, hence a maximum in the stopping power,
Eq. (2), is clearly expected. We have found that for liquid water
and DNA this maximum appears around T = 100 keV [18,19].

The secondary electrons generated by the protons will have an
energy Esec ffi hEi � Ebind, where Ebind is a representative value char-
acterizing the binding energy of the target electrons. For the case of
liquid water Ebind is of the order of 10 eV [10]. Therefore, the gen-
erated secondary electrons could be very effective in producing
DNA strand breaks, due to the low threshold energy for radiation
damage in biomolecules [32].

5. Conclusions

We have calculated the spectral distribution of the electronic
excitations induced by a proton in liquid water and dry DNA. For
this purpose we use the dielectric formalism and obtain the target
energy-loss function, Im[�1/e(x,k)], from optical data and four dif-
ferent models to describe its extension to arbitrary values of
momentum-transfer k, namely the extended-Drude [21], the im-
proved extended-Drude [22,23], the Penn [24], and the MELF–
GOS [25,26] models. We find that, regardless of the proton energy,
the probability distribution P, of the electronic excitations has a
maximum around 25 eV. Besides, P(E,T), which is related to the
number of electronic excitations of a given energy E, decreases

Fig. 3. Probability per unit path length P that a H projectile induces electronic
excitations of energy E in liquid water and DNA. Results for projectile energies
T = 50, 250 and 2500 keV are displayed. The lines represent the calculations
obtained when modelling the ELF with the extended-Drude model (green dashed
lines), the improved extended-Drude model model (blue dash-dotted lines), the
Penn model (magenta dotted lines), and the MELF-GOS model (red solid lines). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Mean energy hEðTÞi of the excitations induced by a hydrogen projectile in (a)
liquid water and (b) DNA as a function of the projectile energy T. The lines represent
the calculations obtained when modelling the ELF with the extended-Drude model
(green dashed lines), the improved extended-Drude model (blue dash-dotted lines),
the Penn model (magenta dotted lines), and the MELF–GOS model (red solid lines).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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with the proton energy T. On the other hand the mean energy
hEðTÞi of the electronic excitations increases monotonically with
the proton energy T ranging from �10–20 eV at T = 10 keV to
�70 eV to T = 5 � 104 keV. All the models examined agree in the
calculation of P(T,E) and hEðTÞi at large values of the proton energy.
At lower projectile energies important differences arise among the
models. The improved extended-Drude and the MELF–GOS models,
are the most reliable since they provide a more realistic description
of the ELF of liquid water at finite transferred momentum, as com-
pared with experiments. We therefore expect that they would also
be more reliable for DNA, as also holds for other non-free-electron-
like materials [33,34]. However, momentum-dependent EELS and/
or IXSS measurements on DNA are desperately needed to validate
model calculations for the energy loss of charged particles in these
important biological materials.
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