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Abstract
The electronic stopping power of liquid water for protons over the 50 keV
to 10 MeV energy range is studied using an improved dielectric response
model which is in good agreement with the best available experimental data.
The mean excitation energy (I) of stopping power theory is calculated to be
77.8 eV. Shell corrections are accounted for in a self-consistent manner through
analytic dispersion relations for the momentum dependence of the dielectric
function. It is shown that widely used dispersion schemes based on the random-
phase approximation (RPA) can result in sizeable errors due to the neglect of
damping and local field effects that lead to a momentum broadening and shifting
of the energy-loss function. Low-energy Born corrections for the Barkas,
Bloch and charge-state effects practically cancel out down to 100 keV proton
energies. Differences with ICRU Report 49 stopping power values and earlier
calculations are found to be at the ∼20% level in the region of the stopping
maximum. The present work overcomes the limitations of the Bethe formula
below 1 MeV and improves the accuracy of previous calculations through a
more consistent account of the dielectric response properties of liquid water.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The stopping power (also called stopping force) of liquid water for protons is a quantity of
fundamental importance to hadron therapy and biophysics (Nikjoo et al 2008). Presently,
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there are over 25 ion therapy facilities worldwide most of which use proton beams either
exclusively or in addition to other light ions (Sisterson 2005). The advantage of using ion
beams for cancer therapy is well understood and is principally due to their favorable absorbed
dose distribution in matter with the characteristic Bragg peak profile (Brahme 2004). This, in
combination with the limited lateral diffusion, allows substantially higher doses to deep-seated
tumors and a sparing effect to shallow normal tissue compared to the conventional electron or
photon beams (Smith 2006).

At high but non-relativistic energies, the electronic stopping due to ionization and
excitation of target electrons represents the dominant energy-loss process. Among several
available theories (Sigmund 2004), the Bethe theory (Inokuti 1971, 1996, Inokuti et al 1978)
represents a standard framework for obtaining reasonably accurate values for light ions over
a wide range of materials (Bichsel 1988, Sigmund 1998, Ziegler 1999, Sabin and Oddershede
2005). The only non-trivial parameter is the mean excitation energy of the material, the
so-called I-value, which represents the main source of uncertainty in Bethe’s formula at high
energies (Inokuti 1971, 1996, Inokuti et al 1978). The I-value for condensed materials is often
determined through either stopping power (and range) measurements or optical absorption
data (ICRU 1984, 1993, 2005). Both methods, however, have their problems. For example,
stopping measurements are usually carried out at ion energies where the various low-energy
corrections to Bethe’s formula are sizeable and, therefore, any experimental uncertainties are
further augmented by the uncertainties of the correction terms used in the analysis (Kamakura
et al 2006). On the other hand, optical data should practically cover a sufficiently large part
of the absorption spectrum to exhaust the K-shell contribution (typically up to 10–100 keV);
such a complete and consistent set of data is often hard to find (Smith et al 2006). The I-value
of liquid water in the context of ion dosimetry has been discussed in a series of recent papers
by Paul (Paul 2007a, 2007b, Paul et al 2007a, 2007b).

Going from higher to lower proton energies, the penetration ability of protons diminishes
and, when below ∼1 MeV, their residual range in tissue becomes less than the resolution
of the treatment planning algorithm used (∼0.1–1 mm). Such low-energy protons are of
particular importance from a biophysical perspective because it is the energy regime where
the Bragg peak develops (∼0.1 MeV) and, as a result, the particles exhibit their highest
RBE (Paganetti et al 2002). Recently, two Monte Carlo codes for simulating full-slowing-
down proton tracks in different phases of water have been developed (Uehara et al 2001,
Friedland et al 2003) and the physics of slow proton stopping has been discussed (Uehara
et al 2000, Dingfelder et al 2000). A fundamental problem in extending Bethe’s formula
down to the Bragg peak region is that its two main assumptions, namely the Born and dipole
approximations, become gradually invalid (Sigmund 1994). Specifically, as the projectile
velocity decreases, the minimum momentum transfer increases and non-dipole collisions
become important rendering the dipole approximation invalid. The effect is more pronounced
for inner shells associated with large binding energies, the contribution of which to the stopping
process gradually vanishes (Basbas 1984). The so-called shell corrections to Bethe’s formula
are meant to account for the above effect (ICRU 1993). Unfortunately, the formal evaluation
of shell corrections proceeds through the, generally unknown, generalized oscillator strength
(GOS) or, for condensed targets, the momentum-dependent dielectric response function (Fano
1963). A standard approach is to employ hydrogen-like GOSs for the inner shells and scaling
laws for the outer shells ignoring any aggregation and phase effects (ICRU 1993). Recent
progress along this line has been reported by Bichsel (2002).

An alternative approach suitable for the condensed phase is to use a model dielectric
response function analytic over the whole energy–momentum plane (Ritchie 1982). Apart
from the evaluation of shell corrections, this method allows for the direct calculation of the
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electronic stopping power in the Born approximation without resorting to Bethe’s dipole
approximation. The Lindhard electron gas dielectric function based on the random phase
approximation (RPA) has offered a practical tool to an otherwise complicated theoretical
problem (Echenique et al 1990, Pitarke and Campillo 2000). Non-RPA effects associated with
damping (Mermin 1970) and local field corrections (Dabrowski 1986) have also been included
in ion stopping calculations for condensed matter (Ashley 1980, Wang and Ma 1990, Schinner
et al 1994). Recent advances along these lines are reported, for example, by Montanari and
Miraglia (2006) and Barriga-Carrasco (2008).

Since an analytic dielectric function from first principles (similar to Lindhard’s) is not
available for realistic materials, Ritchie and Howie (1977) suggested a semi-empirical scheme
whereby experimental optical data are used to give the dependence on energy loss while
physically motivated ‘extension’ schemes provide the dependence on momentum transfer.
Besides its simplicity, the main advantage of the Ritchie–Howie approach is that the use of
optical data specific to the material under consideration automatically accounts for electronic
structure effects in a realistic manner not always possible within the ‘electron gas’ models.

Ashley (1991) first applied the Ritchie–Howie recipe to proton stopping in solids using a
very simple extension scheme based on the (undamped) plasmon-pole approximation with a
quadratic dispersion. A more sophisticated approach using the Mermin dielectric function has
been later advanced by Garcia-Molina and co-workers and applied to a variety of solid targets
(e.g. Abril et al 1998, Denton et al 2008). Ion stopping calculations for liquid water and
other condensed biomaterials along the Ritchie–Howie scheme have been recently undertaken
by Dingfelder et al (2000), Akkerman et al (2001), Tan et al (2006, 2008), Emfietzoglou
et al (2006a, 2006b, 2007a) and Garcia-Molina et al (2009). Calculations mainly differ on
the extension scheme used since experimental data for condensed targets at finite momentum
transfer are scarce. Several extension schemes of RPA origin have been proposed and, for
liquid water, critically evaluated by Emfietzoglou et al (2006c, 2007b, 2008) who clearly
demonstrated the importance of including non-RPA dispersion effects.

Finally, at energies near the stopping maximum, corrections to the Born approximation
must be included. These generally account for higher order perturbation terms and for the
changing charge state of the projectile (Brandt 1982, Basbas 1984, Sigmund 1994). Although
these corrections are generally small above 50–100 keV u−1, they will be considered here for
completeness. Energy losses due to charge-transfer processes, which dominate the stopping
power at even lower energies, are not considered here.

In the present work, we report calculations of the electronic stopping power of liquid water
for protons over the 50 keV to 10 MeV energy range based on an improved dielectric response
model. A new I-value for liquid water is determined while the importance of including non-
RPA effects into the momentum dependence of the dielectric function is explicitly investigated.
The magnitude of low-energy corrections to the Born approximation is also examined.

2. Method

2.1. The Born approximation

The electronic (or collision) stopping power (Scol) of a material for a charged projectile
represents its mean energy loss per unit path length due to inelastic Coulomb collisions with
target electrons and is formally obtained from the differential-in-energy-transfer inelastic cross
section as follows (ICRU 1993):

Scol =
∫ Emax

0
E

d�

dE
dE, (1)
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where � is the macroscopic inelastic cross section (or inverse inelastic mean free path)
and E is the energy transfer from the projectile to the target electrons leading to ionization
and/or (discrete) excitation events. In the latter case, the integration must be replaced by
a summation over the allowed discrete electronic transitions (for simplicity, we keep here
the more general notation). For protons the upper limit of integration is Emax ≈ 4T where
T = mυ2/2 or T = (m/M)τ with m the electron rest mass (mc2 = 511 keV), and υ, τ and
M are the proton velocity, kinetic energy and rest mass (Mc2 = 938 MeV), respectively. The
restricted stopping power (S�) can be directly obtained from equation (1) by simply replacing
Emax by some fixed cut-off value � for the maximum energy transfer in inelastic collisions
(� � Emax).

Assuming sufficiently fast (but still non-relativistic) projectiles of fixed charge so that
the plane wave Born approximation (PWBA) is valid, the dielectric description of � for an
isotropic and homogeneous medium (so that the momentum transfer q is scalar) leads to the
following expression for the electronic stopping power (Ritchie 1982):

SBorn = z2

πa0T

∫ Emax

0
E dE

∫ qmax

qmin

1

q
Im[−1/ε(E, q)] dq, (2)

where a0 = h̄/(me2) is the Bohr radius (a0 = 0.529 × 10−10 m), z is the projectile charge,
Im[ ] denotes the imaginary part of the argument and ε(E, q) = ε1(E, q) + iε2(E, q) is the
target dielectric response function, which contains all the dynamic properties of the material
related to its response to an external perturbation (e.g. charged particle beam). The limits
of integration over q in equation (2) are qmax/min = √

2M(
√

τ ± √
τ − E). It follows from

equation (2) that the imaginary part of the inverse dielectric function, Im[−1/ε(E, q)], the so-
called target energy-loss function (ELF), is the fundamental material property within PWBA.
It should be highlighted that in order to calculate the electronic stopping power according to
equation (2), the ELF must be known over the whole energy–momentum plane; this is the
so-called Bethe surface of the material (Inokuti 1971). Presently, a numerical evaluation of
the Bethe surface of a liquid or amorphous solid is not feasible, and even for simple molecules
some drastic approximations need to be made (Segui et al 2002).

2.2. Dielectric response function

The construction of the model dielectric response function ε(E, q) for liquid water used in
the present study follows the Ritchie–Howie methodology and has been presented in detail
elsewhere (Emfietzoglou et al 2005). Here, we will provide a summary of the model, discuss
an improved K-shell calculation and highlight those aspects which are pertinent to the present
study and set it apart from previous similar calculations. In particular, the inclusion of non-
RPA effects in the extension of the dielectric function to finite momentum transfer will be
discussed in some detail in order to reveal the deficiencies of some widely used schemes. The
basis of our model is the following Drude-like dielectric function:

ε(E, q) = 1 + fj (q)E2
p

{
E2

j (q) − E2 − iEγj (q)
}−1

, (3)

where Ep is a nominal plasmon energy of the material determined from the relationship

Ep = 4
√

nπa3
0 Ry, where n is the electronic density and Ry = 13.6 eV. For liquid water

of mass density of 1 g cm−3, n = 3.34 × 1023 cm−3 so Ep = 21.4 eV. The triad of values
{Ej , γj , fj } in equation (3) are associated with the energy, lifetime and strength, respectively,
of the jth electronic transition. Assuming a one-mode excitation spectrum (j = 1 and fj = 1)
and interpreting Ej(q = 0) as an effective band gap, equation (3) becomes identical to the
original Ritchie–Howie dielectric function as applied to non-metals (i.e. semiconductors and
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insulators). Also, for free-electron materials (Ej = 0 and fj = 1), equation (3) coincides with
the original Drude dielectric function at the limit q → 0; thus, equation (3) generalizes the
Drude function to all materials and provides its extension to non-zero q values (it is therefore
often called an extended-Drude dielectric function). The procedure to determine equation (3)
will be divided into two parts, namely the one pertaining to its optical limit (q → 0) and the
other to its extension to finite momentum transfer (q > 0).

2.2.1. Optical limit. With respect to the optical limit, equation (3) is used to analytically
fit the most recent dielectric data of liquid water obtained from inelastic x-ray scattering
spectroscopy (IXSS) (Hayashi et al 2000). The IXSS data extend from 6 to 160 eV providing
a near complete knowledge of the dielectric response properties of the valence shells (‘v’) of
liquid water through εv

1(E, 0), εv
2(E, 0) and Im[−1/εv(E, 0)]. Overall, five discrete excitations

(A1B1, B1A1, Ryd A + B, Ryd C + D and diffuse bands) and four ionization shells (1b1, 3a1,
1b2, 2a1) were considered in the deconvolution of the IXSS data for εv

2(E, 0). As also
found by others (Dingfelder et al 1998), the fitting of the low-energy part of the spectrum
is substantially improved if derivative Drude functions (which are more sharply peaked) are
used for the five discrete excitation levels. Ionization thresholds were set at 10, 13, 17 and
32 eV whereas excitation energies were distributed between 8 and 15 eV with a threshold
(or energy gap) at 7 eV. This is a working ‘energy-band’ model for liquid water in line with
recent experiments (Wilson et al 2001, Winter et al 2004). For the K-shell, we use here
the hydrogenic GOS approximation, df K(E, q)/dE (Dingfelder et al 2000, Heredia-Avalos
et al 2005, Garcia-Molina et al 2009), which improves the asymptotic behavior of the Drude
function used earlier (Emfietzoglou et al 2005). The latter was based on the photoabsorption
cross sections, σ K

ph, of the NIST-FFAST database (Chantler et al 2005). The two quantities

are related through df K(E, 0)/dE = (
4π2α2a2

0Ry
)−1

σ K
ph where α = 1/137. In both cases,

it is assumed that due to the large difference between the K-edge (∼540 eV) and the valence
excitation region (<100 eV), the former retains its atomic character so that the approximate
relation Im(−1/εK) ≈ εK

2 holds. After combining the valence and K-shell contribution, our
optical-ELF (OELF) of liquid water is obtained from

Im[−1/ε(E, 0)] = Im[−1/εv(E, 0)] + εK
2 (E, 0), (4)

where εK
2 (E, 0) = (

πE2
p

/
2Z

) × E−1 df K(E, 0)/dE, with Z being the number of electrons
in the water molecule.

To a large extent, the general characteristics of our optical-data model are also shared
by earlier dielectric response models of liquid water, most notably, by the ORNL (Ritchie
et al 1991) and GSF (Dingfelder et al 1998, 2000) models which have been documented in
sufficient detail. An important difference, however, is that all earlier models are based on the
old optical reflectance data of Heller et al (1974) whereas the present model is based on the
more recent IXSS data of Hayashi et al (2000). It has been shown recently that this change
alone has a sizeable impact on both electron and proton inelastic calculations (Emfietzoglou
and Nikjoo 2005, 2007, Emfietzoglou et al 2006a, 2006b).

An independent test for the overall consistency of a dielectric optical-data model is
provided by the following sum rules (Smith et al 2006):

f sum rule :
2

πE2
p

∫ ∞

0
E Im[−1/ε(E, 0)] dE = 1, (5a)

conductivity sum rule :
2

πE2
p

∫ ∞

0
E Im[ε(E, 0)] dE = 1, (5b)
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perfect screening sum rule :
2

π

∫ ∞

0

1

E
Im[−1/ε(E, 0)] dE + Re[1/ε(0, 0)] = 1. (5c)

In the present case, all the above sum rules were satisfied to better than 1% (see section 3).

2.2.2. Momentum extension: random phase approximation (RPA). The extension of
the optical dielectric function ε(E, 0) to finite momentum transfer (q > 0) is obtained
following the Ritchie–Howie approach where the momentum dependence is introduced
through appropriate dispersion relations for the Drude coefficients. The search for a physically
motivated extension scheme can be guided by the observation that at q = 0 (and E ≈ Ep), the
Drude dielectric function with γ = 0 coincides with the Lindhard (RPA) dielectric function
which, for small q, exhibits the dispersion relation Ep(q) = Ep + αRPA(q2/2 m) where
αRPA = (6EF /5Ep). For liquid water, the free-electron values of the Fermi (EF) and plasmon
(Ep) energies are 17.5 eV and 21.4 eV, respectively, so the RPA coefficient is about unity
(αRPA = 0.981). Then, the widely used quadratic dispersion for the Drude energy coefficient
follows:

Ej(q) = Ej +

(
q2

2m

)
. (6)

Despite its simplicity, equation (6) is adequate for sufficiently fast projectiles by virtue of its
correct limiting form at q → 0 and q → ∞ (Fernandez-Varea et al 1992, 1993). The latter
ensures that, at high q, single-particle effects are accounted for in an approximate manner
by a quadratic kinetic term, q2/2m, that represents a free-electron-like response. The above
quadratic dispersion leads to the characteristic Bethe ridge (Dingfelder and Inokuti 1999).
For not too fast projectiles (e.g. the Bragg peak region), however, improvements upon the
quadratic RPA dispersion must be considered (Planes et al 1996, Ding and Shimizu 1989,
1996, Kuhr and Fitting 1999).

2.2.3. Momentum extension: local field correction (LFC). It is well known from the
electron gas (or Fermi liquid) theory that the RPA plasmon dispersion must be corrected
downward by the so-called many-body local field correction (LFC) which accounts for short-
range exchange-correlation effects not included in RPA (Ichimaru 1982). Using a static (i.e.
frequency-independent) approximation to the LFC, the plasmon dispersion for small q now
reads

Ep(q) = Ep + αRPA

{
1 −

(
5E2

p

12E2
F

)
ALFC

} (
q2

2m

)
, (7)

where ALFC = (qF /q)2G(q → 0) with G(q → 0) being the static-LFC at the long wavelength
limit. In the context of an extended optical-data dielectric model, an LFC is applied somewhat
indirectly by treating the quadratic RPA coefficient as an adjustable parameter (Kuhr and Fitting
1999). For liquid water, it is only recently that Emfietzoglou et al (2005) first considered such
a correction to the RPA dispersion. These authors found that to better represent the IXSS data
of Watanabe et al (1997, 2000) over the momentum transfer range: 0.69 < q < 3.59 atomic
units (a.u.), the following dispersion relation must be used:

Ej(q) = Ej + g(q)

(
q2

2m

)
, (8)

where g(q) = 1 − exp(−c qd), with the empirically determined parameters c = 1.5 and
d = 0.4 (q in a.u). Contrary to equation (7), which is strictly correct for small q, equation (8)
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is made applicable for all q by using a q-dependent correction which has the desired limiting
behavior, i.e. g(q → 0) = 0 and g(q → ∞) = 1. The latter ensures that single-particle effects
are still accounted for by the quadratic term characteristic of a free-electron-like response.

2.2.4. Momentum extension: damping. Within Lindhard’s theory, plasmons are undamped
electronic excitations (i.e. have infinite lifetime or zero linewidth) up to a critical wavevector
where they decay to electron-hole pairs. Such a sharply peaked ELF spectrum is in contrast to a
large body of experimental evidence that indicate a strong damping mechanism at all q for most
materials (Sturm 1982). Mermin (1970) has provided a phenomenological modification to
the Lindhard dielectric function that includes plasmon damping by phonon-assisted electronic
transitions. Plasmon decay through two (or more) electron–hole pairs has been investigated
extensively and it is a natural outcome in the context of a dynamic (i.e. frequency-dependent)
LFC (Sturm and Gusarov 2000). The important point is that, for small q, all studies predict a
quadratic dispersion for plasmon damping: γ (q) ∝ bq2, differing only in the magnitude (and
nature) of the q2-coefficient (Bachlechner et al 1991, 1993). The q-dependence of γj (q) and
the associated momentum broadening of the ELF have been considered in several extended
optical-data dielectric models to various degrees of sophistication (Ding and Shimizu 1989,
1996, Planes et al 1996, Abril et al 1998, Kuhr and Fitting 1999). In contrast, the effect of
momentum broadening on the Bethe ridge of liquid water was first considered only recently
by Emfietzoglou et al (2005, 2008) who used both a linear and a quadratic dispersion term to
properly represent the IXSS data:

γj (q) = γj + aq + bq2, (9)

where the values of the coefficients are a = 10 eV and b = 6 eV (q in a.u.). Recently, a
revision of the ORNL dielectric model was reported where a linear dispersion for the damping
coefficient was used in the form γj (q) = γj + qRy (Dingfelder et al 2008).

2.2.5. Momentum extension: the plasmon-pole approximation. A convenient simplification
of the Lindhard dielectric function is the so-called plasmon-pole approximation, which
replaces the entire ELF spectrum by a single plasmon excitation along the dispersion line
Ep(q) (Overhauser 1971, Penn 1976). Its utility in the context of the extended optical-data
methodology was revealed by the pioneering work of Penn (1987), which served as the basis
of the widely used Tanuma–Powell–Penn calculations of electron inelastic mean free paths
(Tanuma et al 2003) and stopping powers (Tanuma et al 2008) in solids. The first application
of the plasmon-pole approximation to proton stopping was done by Ashley (1991). More
recently, Akkerman et al (2001) and Tan et al (2006, 2008) have used it to calculate proton
stopping powers in a variety of biological compounds including liquid water. The form of
the plasmon-pole dielectric function follows from equation (3) if we assume that collective
(plasmon-like) excitations take place at resonance energies �2

0 = E2
j + E2

p with zero damping
(γ → 0). Then, it may be shown that the momentum-dependent ELF can be obtained from
its optical limit through (Penn 1987):

Im[−1/ε(E, q)] = Eo

E
Im[−1/ε(Eo, q = 0)], (10)

where Eo is the positive solution of the dispersion relationship Ep(Eo, q) = E. To our
knowledge, all calculations so far within this scheme for proton stopping have followed
Ashley (1991) and used the quadratic RPA dispersion relation (equation (6)). Alternatively,
as suggested by Penn (1976, 1987), one can adopt the more accurate expression:

E2
p(q) = E2

p + (4/3)EF

(
q2

2m

)
+

(
q2

2m

)2

. (11)
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2.3. The Bethe approximation

By using the f sum rule and a distinction between low- and high-q collisions, Bethe showed
that equation (2) reduces to the following asymptotic form in powers of 1/T (Inokuti 1971):

S = AT −1 ln(T ) + BT −1 + CT −2 + · · · . (12)

Since the Born approximation is essentially a high-T approximation, equation (12)
automatically provides the most important contributions to the stopping power. Specifically,
the terms of order T −1 will be dominant at high energies, whereas the term of order T −2

provides the principal correction at lower energies. The coefficients A, B and C depend on
target properties related to the ELF. Importantly, the coefficients A and B of the first-order
terms (T −1) are obtained solely from the optical limit of the ELF:

A = E2
p

2a0
, (13)

B = A ln

(
4

I

)
, (14)

where I is the mean excitation energy which, for condensed systems, is defined by

ln(I ) =
∫ ∞

0 E ln(E)Im[−1/ε(E, 0)] dE∫ ∞
0 E Im[−1/ε(E, 0)] dE

. (15)

The leading order of equation (12) constitutes the well-known (uncorrected) Bethe stopping
power formula which, for heavy projectiles of charge z and coefficients from equations (13)–
(15), reads

SBethe = z2E2
p

2a0T
ln

(
4T

I

)
. (16)

It follows that the Bethe formula, equation (16), is based not only on the Born approximation
but also on an additional high-energy approximation in the form of a dipole approximation
which assumes that the next order term (CT −2), which depends upon the extension of the
ELF to finite momentum transfer, is negligible (Basbas 1984). Thus, low-energy corrections
to Bethe’s formula of order T −2 originate from non-dipole interactions. In the conventional
terminology, these represent the so-called shell corrections (C/Z) to Bethe’s stopping power
formula (the C used in the shell-correction term, equations (17) and (18), is related to but
different from the one used in equation (12)):

Sfull−Bethe = z2E2
p

2a0T

[
ln

(
4T

I

)
− C

Z

]
. (17)

Fano (1963) has given a theoretical non-relativistic expression for the shell-correction
term which, in principle, allows the contribution of each individual shell to be calculated
independently. If recast in terms of the ELF, Fano’s expression reads

C

Z
= C1

Z
+

C2

Z
, (18a)

C1

Z
= 2

πE2
p

∫ Emax

0
E dE

∫ qmin

0

1

q
{Im [−1/ε(E, q)] − Im [−1/ε(E, 0)]} dq, (18b)

C2

Z
= − 2

πE2
p

∫ Emax

0
E dE

∫ ∞

qmax

1

q
Im[−1/ε(E, q)] dq. (18c)
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Since qmin ≈ E/υ, the shell-correction term increases with decreasing projectile velocity
and is more important for inner shells than for outer shells by virtue of their larger binding
energies (and thus the energy loss E). An alternative and perhaps more practical definition of
the shell-correction term is based on the following relation (Oddershede et al 2005, Sigmund
and Schinner 2006):

C

Z
= LBethe − LBorn, (19)

where

LBethe = ln

(
4T

I

)
(20)

and

LBorn = 2a0T

z2E2
p

SBorn. (21)

In the present work, shell-correction calculations by both the above approaches are presented.

2.4. Low-energy Born corrections

2.4.1. Barkas and Bloch terms. As the projectile velocity decreases, first-order perturbation
theory is inadequate and higher order terms proportional to z3 and z4 must be included to
account, respectively, for the Barkas effect and the Bloch correction term. The corrected
stopping power then reads

Scorrected = SBorn + SBarkas + SBloch (22)

or

Scorrected = z2E2
p

2a0T
(Lfull−Bethe + zLBarkas + z2LBloch), (23)

where Lfull−Bethe is the stopping number, the term between brackets in equation (17), which
includes the shell-correction term.

Although a generally accepted theory of the Barkas effect is not available, the Ashley–
Ritchie–Brandt (ARB) statistical model (Ashley et al 1972, 1973) has appeared over the years
to offer the most practical approach for representing the Barkas-effect correction to stopping
theory (Porter and Lin 1990, ICRU 1993). More recently, Ashley (1991) has suggested an
improvement to the ARB model in those cases where the actual absorption spectrum of the
material is known. Then, in the ‘distant collision’ (or optical) approximation of the Barkas
effect, the corresponding stopping number reads (Ashley 1991)

LBarkas = 2

πE2
p

∫ Emax

0
E Im [−1/ε (E, 0)] L1(E; ξ) dE, (24)

where

L1(E; ξ) = (
√

Ry/2)
E

T 3/2
H(ξ), (25)

with ξ = 0.1356a(E/T 1/2), where a is the minimum distance of glancing collisions, and H(ξ)

being a tabulated function which has been analytically approximated by Ashley (1991). For
the value of the model parameter a, there are two choices, namely the Jackson and McCarthy
(1972) value of a = 3.688/E1/2 and the Lindhard (1976) value of a = 2.070/T 1/2. For
organic insulators including liquid water, the Jackson and McCarthy value has been found
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(Akkerman et al 2001, Emfietzoglou et al 2006a) to result in much more reasonable values
for the Barkas-effect correction and, therefore, it is adopted here.

For the Bloch correction term, we use the standard parametrization (Bichsel and Porter
1982, ICRU 1993):

z2LBloch = −y2{1.202 − y2(1.042 − 0.855y2 + 0.343y4)}, (26)

where y = z(α/β) with α = 1/137 and β = υ/c.

2.4.2. Charge-state effect. At projectile energies in the region of the stopping maximum
and below, the process of charge exchange between the projectile and the target (i.e. electron
capture from and loss to the target) modifies the energy loss as calculated from equation (2).
At dynamic equilibrium, we can assign a particular charge fraction at each charge state of the
projectile in the material. Then, the electronic stopping power can be obtained by a weighted
sum of the electronic stopping power for each charge state k of the projectile (Heredia-Avalos
and Garcia-Molina 2002):

S =
z∑

k=0

φkSk, (27)

where φk is the probability of finding the projectile in a given charge state k. The φk values,
assuming that they equal the charge-state fractions at equilibrium, will depend upon the target
material, the projectile and its velocity. In the present work, φk are obtained from the CasP 3.1
code (Grande and Schiwietz 2005). Then, the electronic stopping power in the Born
approximation for a projectile with charge-state k is given, instead of equation (2), by (Ferrell
and Ritchie 1977)

SBorn,k = z2

πa0T

∫ Emax

0
E dE

qmax∫
qmin

ρ2
k (q)

q
Im[−1/ε(E, q)] dq, (28)

where ρk(q) is the Fourier transform of the projectile charge density for the charge-state k.
In the present study, ρk(q) is calculated according to the modified Brandt–Kitagawa model
(Brandt and Kitagawa 1982, Brandt 1982) which has been successfully applied for proton
stopping in various solids (Garcia-Molina et al 2006).

3. Results

Our optical energy-loss function (OELF) based on equation (4) is presented in figure 1 along
with the most recent data for water. The IXSS data (Hayashi et al 2000) pertain to the valence
shells of the liquid phase covering the energy range from 6 to 160 eV. On the other hand, the
data from the FFAST database of NIST refer to the water molecule in the gas phase including
the oxygen K-shell which sets in at ∼540 eV. The total OELF is shown for two different
representations of the K-shell, namely a Drude function parametrization (Emfietzoglou et al
2005) and a hydrogenic GOS (Heredia-Avalos et al 2005, Garcia-Molina et al 2009) assuming
in both cases that Im(−1/εK) ≈ εK

2 . The sum rules calculated from equations (5a), (5b) and
(5c) give 1.00 (f sum rule), 0.998 (conductivity sum rule) and 1.01 (perfect screening sum rule),
respectively. For the latter, we have used the relationship Re[1/ε(0, 0)] = 1/ε1(0, 0) = 1/n2,
where n = 0.572 is the refractive index of liquid water taken from Hayashi et al (2000). The
contribution of the oxygen K-shell to the OELF is explicitly shown in figure 2. For both the
Drude and hydrogenic representations, the K-shell contribution to the f sum rule was fixed at
0.179 consistent with accurate atomic calculations (Inokuti et al 1981).



A dielectric response study of the electronic stopping power of liquid water 3461

Figure 1. Our ELF model for water at the optical limit (equation (4)) is compared to the inelastic
x-ray scattering spectroscopy (IXSS) measurements of Hayashi et al (2000) for liquid water, and
the FFAST database of NIST (Chantler et al 2005) for the water molecule. The total ELF is shown
for two different representations of the K-shell, namely a Drude parametrization or a hydrogenic
GOS, assuming in both cases that Im(−1/εK) ≈ εK

2 . In the inset, we focus on the valence losses
of liquid water and compare our model with the IXSS data.

Figure 2. Similar to figure 1, for the K-shell only.

The mean excitation energy (I-value) of liquid water calculated from equation (15) but
with a variable maximum energy transfer is presented in figure 3. Similar to figure 1, the
total I-value is also shown for two different representations of the K-shell, namely a Drude
function parametrization (Emfietzoglou et al 2005) and a hydrogenic GOS (Heredia-Avalos
et al 2005, Garcia-Molina et al 2009). The use of a Drude K-shell leads to I = 82.4 eV
whereas a hydrogenic K-shell to I = 77.8 eV. Further increase in the maximum energy transfer
beyond 1 MeV does not alter the above values to the third significant digit.

The momentum dependence of the ELF using both the plasmon-pole approximation
(equation (10)) and the extended-Drude dielectric function (equation (3)) is presented in
figure 4. Note that all ELF models coincide at the optical limit (q = 0) where the OELF
of figure 1 is obtained. Comparisons are made against the IXSS data (Watanabe et al 1997,
2000) for momentum transfer values q = 1.02, 1.81, 2.52 and 3.59 a.u. For the plasmon-
pole calculations, we use the dispersion schemes suggested by Ashley (1991) and Penn
(1987). The former employs the quadratic RPA dispersion (equation (6)) whereas the latter
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Figure 3. The mean excitation energy (I) of the stopping power theory is calculated as a function
of the maximum energy transfer from equation (15). The contribution of the K-shell is calculated
by both a Drude parametrization and a hydrogenic GOS (see figures 1 and 2).

Figure 4. Comparison of IXSS data (Watanabe et al 1997, 2000) for the ELF of liquid water
at finite momentum-transfer (q > 0) with calculations based on extended optical-data dielectric
response models having different dispersion schemes (see the text for explanation on the models;
P: Penn, A: Ashley, R: Ritchie, E: Emfietzoglou).

uses an improved expression (equation (11)). For the extended-Drude calculations, we use
both the quadratic RPA dispersion (equation (6)) suggested by Ritchie et al (1991) and the
corrected RPA dispersion of Emfietzoglou et al (2005), which accounts for local field effects by
equation (8) and damping by equation (9). Note that the energy range depicted is below the
K-edge so there is only contribution from the valence shells.

The above dielectric response models are then used to calculate in the Born approximation
(equation (2)) the electronic stopping power of liquid water for energetic protons (figure 5).
The Bethe approximation calculated from equation (16) with I = 75 eV (ICRU 1984, 1993) is
also shown for comparison.

A comparison of theoretical and experimental data on the electronic stopping power
of water in the condensed phase (liquid water or water ice) is presented in figure 6.
Values are shown above 50 keV where the electronic stopping is the dominant (but not the
only) mechanism of energy loss. The present calculations are based on the charge-state
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Figure 5. The electronic stopping power of liquid water in the Born approximation as a function
of proton energy calculated by different dielectric response models (see the text for explanation
of models). Results from the (uncorrected) Bethe formula with an I-value of 75 eV (ICRU 1984,
1993) are depicted for comparison.

Figure 6. Comparison of our present calculations of the electronic stopping power of liquid water
(corrected for Barkas, Bloch, and charge state) with the ICRU (1993) values and other theoretical
and experimental studies. The data of Wenzel and Whaling (1952) and Bauer et al (1998) are based
on experimental measurements on D2O-ice and H2O-ice, respectively, while the calculations of
Xu et al (1985), Dingfelder et al (2000) and Akkerman et al (2001) use different approximations
for the dielectric response function of liquid water (see the text). In the inset, we plot the ratio of
the Barkas–Bloch (equation (22)) and charge state (equation (28)) corrected stopping power to the
uncorrected (Born) stopping power (equation (2)).

approximation (equations (27) and (28)) supplemented with Barkas and Bloch terms
(equations (24)–(26)). The ELF is obtained from the present dielectric response model
(equations (3), (4), (8) and (9)) which combines the corrected RPA dielectric response model of
Emfietzoglou et al (2005) for the valence shells and the hydrogenic GOS for the K-shell. In the
inset, we show the ratio of the Barkas–Bloch (equation (22)) and charge-state (equation (28))
corrected stopping power to the uncorrected (Born) stopping power (equation (2)). The use
of a charge-state correction is responsible for the slightly lower stopping power values in the
region of the maximum compared to those of Emfietzoglou et al (2007a) which employ the
same dielectric function for the valence shells with the present study. The calculations by
Dingfelder et al (2000) and Akkerman et al (2001) use the extended-Drude and plasmon-pole
approximations, respectively, with a quadratic RPA dispersion (equation (6)). However, the
optical limit in both studies is constructed based on a parametrization of the old reflectance
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Figure 7. The K-shell contribution (in%) to the total electronic stopping power as a function of
proton energy calculated by the hydrogenic GOS model and the extended-Drude model with the
corrected RPA dispersion.

data of Heller et al (1974). The calculations of Xu et al (1985) are based on a modified
local-plasma approximation model. The data of Wenzel and Whaling (1952) and Bauer et al
(1998) are based on experimental measurements on D2O–ice and H2O–ice, respectively, with
reported uncertainties at ∼5%. Finally, for energies above 0.5 MeV, the ICRU (1993) values
are based on the Bethe formula (with I = 75 eV) supplemented with Barkas, Bloch and
shell-correction terms, while at lower energies a fit to experimental data is being used; note
that these experimental data correspond to ice and not liquid water. The contribution of the
K-shell to the total electronic stopping over the above energy range is shown in figure 7. This
contribution is calculated based on either a hydrogenic GOS or the extended-Drude model
with the corrected RPA dispersion.

The shell-correction term (C/Z) defined as the difference between the Bethe and Born
stopping numbers (equation (19)) is depicted in figure 8 (panel a) for two different values of
the mean excitation energy, while the ratio (C/Z)/LBorn is shown in the inset. In panel b,
Fano’s expression for C/Z (equation (18)) has been used to calculate, based on the different
dielectric response models discussed above (see figure 4), the separate contribution of the
valence and K-shell to the (total) shell-correction term.

The magnitude of the various stopping numbers (L) is presented in figure 9. The Born
stopping number (LBorn) corresponds to the present dielectric response model, the Barkas
(LBarkas) and Bloch (−LBloch) stopping numbers are evaluated according to equations (24)
to (26), and the Bethe stopping number (LBethe) represents the logarithmic term in Bethe’s
formula (equations (16) and (20)) for I = 75 eV.

Finally, in figure 10, we present the ratio of the restricted to the total electronic stopping
power over the proton energy range from 0.5 to 10 MeV for different cut-off values of
maximum energy transfer. The ICRU (1993) values are compared with those obtained from
the present dielectric response model.

4. Discussion

4.1. The I-value of liquid water

The mean excitation energy (the so-called I-value) is the most important material quantity
in the calculation of the electronic stopping power of energetic ions (>1 MeV u−1) through
Bethe’s formula and represents its main source of uncertainty at high energies (Kamakura
et al 2006). The I-value can be generally determined in three ways: (i) from an analysis
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(a)

(b)

Figure 8. (a) The shell-correction term (C/Z) calculated from the present dielectric response
model using the difference between the Bethe and Born stopping numbers (equation (19)) for
two different values of the mean excitation energy. The inset presents the ratio of (C/Z)/LBorn.
(b) Fano’s expression for C/Z (equation (18)) is used to calculate partial shell corrections for the
valence (full-line) and K-shell (broken-line) based on dielectric response models having different
dispersions but the same optical limit (see the text for explanation on the models; P: Penn, A:
Ashley, R: Ritchie, E: Emfietzoglou).

Figure 9. The various stopping numbers (L) corresponding to the present dielectric response model
(LBorn; having I = 77.8 eV), the Barkas (LBarkas) and Bloch (−LBloch) corrections evaluated from
equations (24) to (26), and the Bethe stopping number (LBethe) of equation (20) for I = 75 eV.
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Figure 10. The ratio of the restricted (S�) to the total (S) electronic stopping power over the proton
energy range from 0.5 to 10 MeV, for different cut-off values of maximum energy transfer (�);
comparison of the ICRU (1993) values with those obtained from the present dielectric response
model.

of stopping power (and range) measurements, (ii) from optical absorption data and (iii) by
ab initio calculations. The last method is not yet applicable to condensed targets (liquids
and solids). Recently, Paul (Paul 2007a, 2007b, Paul et al 2007a, 2007b) has reviewed the
literature on the I-value of liquid water and concluded that an I-value of 80.8 ± 2 eV (Paul et al
2007a, 2007b) appears more in line with recent data than the ICRU (1984, 1993) value of 75 ±
3 eV. In the present study, we improve upon our previous semi-empirical estimate of the I-value
of liquid water (Emfietzoglou et al 2005) by a more careful examination of its high-energy
(asymptotic) trend and K-shell contribution. The calculations are based on equation (15) which
defines the I-value as a weighted average over the complete OELF Im[−1/ε(E, q = 0)] of
the material. The OELF is evaluated semi-empirically from a dielectric response function
for the valence shells and an optical oscillator strength for the K-shell. This is a standard
methodology for condensed targets, first applied to liquid water by Ritchie et al (1978) who
obtained an I-value of 75 eV. Subsequent studies along the same line by Ashley (1982) and
LaVerne and Mozumder (1986) practically confirmed Ritchie’s earlier estimate, resulting in
75.4 eV and 74.9 eV, respectively. However, a substantial spread has been observed in more
recent calculations: 81.8 eV (Dingfelder et al 1998), 74 eV (Akkerman and Akkerman 1999),
72.5 eV (Tan et al 2004), 82.4 eV (Emfietzoglou et al 2005) and 79.4 eV (Garcia-Molina et al
2009). Experiments, on the other hand, have resulted in I-values of 74 eV (Luo et al 1991),
79.7 ± 0.5 eV (Bichsel and Hiraoka 1992), 77 eV (Kramer et al 2000) and, more recently,
78.4 ± 1.0 eV (Kumazaki et al 2007). Thus, apart from the study of Luo et al (1991), the
experimentally determined values clearly point to an upward shift of the ICRU value by a few
eV. The situation, however, is less clear with respect to semi-empirical calculations mentioned
above. Although the general principles of this approach are well understood and to a good
approximation valid, the choice of the data used and the quality of the analytic representation
can substantially affect the final outcome. It is important to note that before Emfietzoglou
et al (2005), nearly all studies despite being based on the same set of dielectric data (Heller
et al 1974) have resulted in considerably different I-values. Furthermore, as reported by
Emfietzoglou et al (2005), a variation of several eV is expected simply from the choice of the
dielectric and/or K-shell data used. These authors first employed the new dielectric data of
Hayashi et al (2000) which are both more accurate and more complete than the old reflectance
data of Heller et al (1974), whereas for the K-shell, they used the FFAST database of NIST
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which, contrary to the perhaps more familiar XCOM database (also of NIST), extends down
to the K-edge (the two databases practically coincide at high energies for water).

The Emfietzoglou et al (2005) I-value estimate, however, suffers from well-known
incorrect asymptotic behavior of the Drude function as clearly shown in figures 1 and 2
(see also the discussion below). To investigate the consequences of the above fact, we have
calculated the contribution of the valence and K-shells to the I-value as a function of the upper
limit of integration in equation (15), i.e. the maximum energy transfer, using both a Drude and
a hydrogenic representation for the K-shell (figure 3). For all practical purposes, the I-value
does not change if the integration is extended beyond ∼1 MeV. The K-shell contribution
amounts to nearly 40%, so its proper representation is as critical as that of the valence shells.
The use of a hydrogenic K-shell leads to an I-value of 77.8 eV which is 4.6 eV smaller than
the Emfietzoglou et al (2005) value of 82.4 eV. Given that the f sum rule contribution of the
K-shell was kept fixed (at f K = 0.179) for both the hydrogenic and Drude representation,
their difference is due to their asymptotic behavior: the hydrogenic εK

2 (E, 0) falls as ∼E−4.5

and fits well the NIST data (except near the edge), whereas the Drude εK
2 (E, 0) falls as

∼E−3 overestimating the data above a few keV. However, as can be clearly seen in figure 1,
the improvement brought about by a hydrogenic K-shell is to some extent compromised
by the still wrong asymptotic behavior of the Drude valence shells. Thus, the total OELF
(equation (4)) with a hydrogenic K-shell still overestimates the NIST data above a few tens
of keV, albeit to a much smaller extent than a full Drude model. In conclusion, the value of
77.8 eV obtained by the use of the hydrogenic K-shell must be preferred. Its error margin is
probably not larger than 1 eV since the hydrogenic curve (see figure 3) has already reached
(within 1 eV) its asymptotic value at ∼10 keV where the total OELF starts overestimating the
data (see figure 1).

4.2. Shell corrections and dispersion effects

Shell corrections represent the most important correction to Bethe’s formula below ∼1 MeV
proton energies. The correction originates from the dipole approximation that leads to the
concept of the I-value (Basbas 1984). Therefore, they are directly related to the momentum
dependence (dispersion) of the dielectric function. Within Bethe’s theory, the evaluation of the
shell-correction term (C/Z) usually proceeds through equation (19) where the Born stopping
number is obtained experimentally. A fundamental problem with this approach is that the shell-
correction term becomes important at an energy range where the other low-energy corrections
(Barkas and Bloch terms) are sizeable (equation (23)). Moreover, the whole procedure assumes
that an accurate I-value is already known independently by some other means. As a practical
alternative, atomic models for the inner shells and scaling laws for the outer shells are often
used in the evaluation of shell corrections (Bichsel 2002). For condensed targets, it is therefore
desirable to have an analytic form for the momentum-dependent dielectric response function.
As can be seen from figure 8(a), the shell-correction term calculated from the present dielectric
response model can reach 20% of LBorn at proton energies (∼100 keV) where the electronic
stopping power becomes maximum (Bragg peak).

Using Fano’s expression, we show in figure 8(b) that the magnitude of the shell-correction
term is quite sensitive to the dispersion scheme used and, in particular, to whether damping
is included (‘E’ curve). The latter substantially increases the valence contribution which,
in the particular model displayed, exceeds that of the K-shell. In contrast, if damping is
neglected, the valence contribution becomes dominant only below a few hundred keV where
the K-shell stopping vanishes (figure 7). Note that the results of figure 8(b), although of
similar magnitude, do not exactly match those of figure 8(a) and should be considered only
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approximate; for example, in all the dielectric models depicted, the K-shell does not satisfy
the partial sum rule for non-zero q due to the applied large cut-off energy (the K-edge at
540 eV) in the associated Drude function. The present stopping power calculations (figure 6),
which use the hydrogenic GOS and not the Drude function representation for the K-shell, are
consistent with the shell correction of figure 8(a).

The influence of dispersion upon the magnitude of the electronic stopping power is
evident in figure 5. Although differences between the models are only a few percent above
1 MeV, they gradually increase at lower energies reaching 20–30% at 50–100 keV. The
reason lies in the different Bethe surface characteristics which directly affect the momentum
quadrature over the ELF (Emfietzoglou et al 2005, 2008). Specifically, the local-field-type
correction used in equation (8) which causes a shift of the ELF to lower energy transfers
with increasing q (see figure 4) is responsible for a corresponding shift of the stopping
maximum to lower proton energies. On the other hand, the smaller stopping power for energies
above the maximum and, especially, the more gradual fall below the maximum are due to
damping introduced by equation (9) which causes the momentum broadening of ELF (see
figure 4).

The above effects are also responsible for the difference of our present electronic stopping
power values and previous calculations by Xu et al (1985), Dingfelder et al (1998) and
Akkerman et al (2001) which are all based on a more simplistic dispersion scheme for the
momentum dependence of the dielectric function (figure 6). To some extent, they should also
be responsible for our differences with ICRU. However, for proton energies below 500 keV
where differences are largest, ICRU based its estimates on an empirical fit to experimental
data which might include additional stopping mechanisms not examined here (e.g. by charge
transfer and by the collisions of neutral hydrogen atoms). Likewise, the neglect in our study
of such energy-loss processes might also explain our underestimation by about 20% of the
experimental data of Wenzel and Whaling (1952) and Bauer et al (1998) which are, however,
for ice not liquid water. On the other hand, the differences from ICRU in the restricted
stopping power (figure 10) most likely reflect an inherent shortcoming of the ICRU method
which employs the Bethe formula with a varied upper limit of binary collisions. As �

decreases below 1 keV, the Bethe formula grossly overestimates the restricted stopping power.
This is because as the upper limit of energy transfer is decreased, the calculation becomes
increasingly more sensitive to the exact excitation spectrum of the material (as represented by
its ELF) and the use of single parameter (I-value) gradually fails.

4.3. Low-energy Born corrections

Higher-order corrections for the Barkas and Bloch effects as well as for the changing charge
state of the projectile are known to be important in the region of the stopping maximum and
below. From figures 6 (inset) and 9, it is clear that although the Barkas and Bloch terms
in absolute terms become sizeable below a few hundred keV, their net effect remains small
(<3%) down to 100 keV. At even lower energies, the Bloch term gradually dominates and
a net correction of ∼10% is obtained at 50 keV. Similarly, the charge-state correction is
relatively insignificant (<3%) above 100 keV, while it increases to ∼10% at 50 keV. Given
that the charge-state and the Barkas–Bloch corrections have opposite effects above 100 keV
(the former reduces whereas the latter increases the stopping power), their net effect can be
safely neglected in that region. On the other hand, below 100 keV the Barkas–Bloch correction
turns gradually negative due to the dominance of the latter and adds up to the charge-state
correction leading to an ∼20% reduction at 50 keV.
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5. Conclusion

The electronic stopping power of liquid water for energetic protons has been studied using
an improved dielectric response function. The mean excitation energy (I) of liquid water
is estimated to be 77.8 eV with an error margin which is perhaps not larger than 1 eV.
The importance of including corrections to the RPA dispersion is shown to have a sizeable
impact to shell-correction calculations and to the electronic stopping power at the region of
its maximum. Low-energy Born corrections can be safely neglected down to 100 keV proton
energies. While our calculated stopping powers satisfactorily agree at high proton energies
with currently available tabulations and other calculations, discrepancies appear in the region
of the stopping maximum. As these projectile energies determine the development of the
Bragg peak, further studies (both theoretical and experimental) in the energy range below
1 MeV would help to elucidate the reported differences.
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