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Abstract
We have evaluated the spatial distribution of energy deposition by proton beams
in liquid water using the simulation code SEICS (Simulation of Energetic Ions
and Clusters through Solids), which combines molecular dynamics and Monte
Carlo techniques and includes the main interaction phenomena between the
projectile and the target constituents: (i) the electronic stopping force due to
energy loss to target electronic excitations, including fluctuations due to the
energy-loss straggling, (ii) the elastic scattering with the target nuclei, with
their corresponding energy loss and (iii) the dynamical changes in projectile
charge state due to electronic capture and loss processes. An important feature
of SEICS is the accurate account of the excitation spectrum of liquid water,
based on a consistent solid-state description of its energy-loss-function over
the whole energy and momentum space. We analyse how the above-mentioned
interactions affect the depth distribution of the energy delivered in liquid water
by proton beams with incident energies of the order of several MeV. Our
simulations show that the position of the Bragg peak is determined mainly
by the stopping power, whereas its width can be attributed to the energy-loss
straggling. Multiple elastic scattering processes contribute slightly only at the
distal part of the Bragg peak. The charge state of the projectiles only changes
when approaching the end of their trajectories, i.e. near the Bragg peak. We
have also simulated the proton-beam energy distribution at several depths in the
liquid water target, and found that it is determined mainly by the fluctuation in
the energy loss of the projectile, evaluated through the energy-loss straggling.
We conclude that a proper description of the target excitation spectrum as well
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as the inclusion of the energy-loss straggling is essential in the calculation of
the proton beam depth–dose distribution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the irradiation of biological materials with energetic protons (and heavier
charged particles) has nowadays become of great interest due to its applications in ion-beam
radiotherapy and space radiation protection (Goitein et al 2002, Brahme 2004, Podgoršak
2006, Nikjoo et al 2008a, Andreo 2009, Schardt et al 2010, Paganetti and Kooy 2010, Belkić
2010).

In order to predict the damage produced by energetic ions in a biological tissue it is
necessary to understand the physical processes involved in the interaction of these projectiles
with the biological target. The use of energetic protons (and heavier atomic projectiles, like
carbon) in oncological treatments has important advantages if compared with conventional
photon or electron beam therapy (Kiefer 2008, Blakely and Chang 2009). This is because
photon or electron projectiles, at clinically relevant beam energies, deposit a high fraction of
their energy near the surface of the biological tissue, causing undesirable damage in healthy
tissues when treating deep-seated tumours. In order to minimize this damage, several photon
and electron beams irradiating from different directions usually are needed (i.e. intensity
modulated radiation therapy, IMRT). On the other side, high-energy protons have a well-
defined penetration range, do not suffer significant angular scattering, and lose most of their
energy in a well-localized region near the end of their trajectories. This pattern of energy
deposition (known as the Bragg curve) results in a more favourable depth–dose profile for
radiotherapy purposes, especially due to the distinct narrow peak (named the Bragg peak)
at the end of the projectile path, which defines a localized region of the target where the
energy delivered and the relative biological effectiveness are enhanced (Paganetti et al 2002).
The position of the Bragg peak in the treated target can be precisely adjusted by varying the
energy of the protons and therefore affecting malignant tumours while minimizing damage to
healthy cells. In summary, the depth–dose curves from protons are much more suitable for
tumour therapy than those from photon or electron beams (Kraft 2000, Smith 2006). Several
general-purpose Monte Carlo simulation codes have been developed in the last years, like
GEANT (Agostinelli et al 2003, Allison 2006), PENELOPE (Salvat et al 2003), PARTRAC
(Friedland et al 2003), SHIELD-HIT (Gudowska et al 2004) or FLUKA (Sommerer et al
2006), which combine reliability and speed and provide essential data for medical physics and
radiation protection; for a review see Nikjoo et al (2006). Recent efforts include the clinical
implementation of Monte Carlo simulation codes for the support of treatment planning in
proton beam radiotherapy (Fippel and Soukup 2004, Stankovskiy et al 2009, Paganetti and
Kooy 2010) as well as the development of detailed track structure codes for full-slowing-down
simulation of proton and secondary electron tracks in water (Champion et al 2005, Plante and
Cucinotta 2008, Gonzalez-Muñoz et al 2008, Friedland et al 2011, Liamsuwan et al 2011).

The aim of this work is to analyse the main physical phenomena that affect and determine
the energy deposited by a proton beam as a function of depth in soft tissue, approximated
here by unit-density (1 g cm−3) liquid water. We are particularly interested in studying the
interactions that take place near the Bragg peak and in determining the energy deposited
in the target around this depth, knowledge of which is essential in radiotherapy. For this
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reason, we will deal with relatively low projectile energies around a few MeV instead of the
higher beam energies commonly used in proton radiotherapy (∼70–250 MeV). Liquid water
is chosen as the target because all living organisms are mainly composed of water (being also
the source of highly reactive free radicals); therefore, therapeutic proton beams must travel
through this stopping medium although the energy they deliver to subcellular structures (most
notably to the DNA) is also important from a biophysical perspective (Nikjoo et al 2001,
Paganetti 2005, Obolensky et al 2008, Solov’yov et al 2009, Lindborg and Nikjoo 2011).
To that end, an important advantage of the present methodology is that it can be effectively
applied for modelling the interactions (and energy deposition) of a proton beam with other
condensed-phase biological targets (Abril et al 2011, de Vera et al 2011).

It should be mentioned that our study does not attempt a detailed description of electron
exchange taking place close to the Bragg peak, where more sophisticated methodologies, like
the continuum distorted wave approximation, are providing promising new results (Olivera
et al 1996, Boudrioua et al 2007, Belkić et al 2008).

The main tool we use for this study is a simulation code named SEICS (Simulation of
Energetic Ions and Clusters through Solids), which is based on a combination of molecular
dynamics and Monte Carlo techniques to describe the projectile motion through the target
(Heredia-Avalos et al 2007a). The SEICS code, whose features are described in the appendix,
includes in a detailed manner both the interaction of the projectile with the target electrons (i.e.
the stopping force, which is mainly responsible for the energy lost by the projectile), as well
as the interaction with the target nuclei (i.e. the elastic scattering, which is mainly responsible
for the beam angular spread). As the stopping force depends on the charge state of the
projectile, we have also considered electron-capture and -loss by the projectile when it moves
through the target. Taking into account all these processes, the SEICS code dynamically
follows the motion of each projectile, providing its position, velocity and charge state at any
time. With these data the code can evaluate very useful magnitudes for radiotherapy, namely,
the spatial distribution of energy deposition, the energy distribution and the angular spread
of the beam at a given depth, the penetration range, the average charge of the projectile as a
function of the depth, etc.

In section 2, we discuss the calculation of the main stopping magnitudes (stopping power
and energy-loss straggling), whose values determine the slowing down of protons in liquid
water, and are the essential inputs into the SEICS code. A comparison with recent stopping
power measurements of protons in liquid water is also shown. The results provided by
the SEICS code for the depth–dose distributions and the energy distribution of protons in
liquid water, together with a discussion of the influence of each interaction considered in the
simulation, are discussed in section 3. Finally, we present the conclusions in section 4. The
appendix contains a full description of the SEICS simulation code.

2. Inelastic energy-loss magnitudes of swift projectiles

When a swift atomic ion moves through a target (liquid water, in our case), it loses energy
mainly due to inelastic collisions with the target electrons. Moreover, the projectile can
change its charge state due to electronic capture and loss processes with the target electrons
until reaching a dynamical equilibrium. The most important magnitudes that describe the
electronic slowing down of the projectile are the stopping power (or stopping force) and the
energy-loss straggling, both depending on the energy and charge state of the projectile, as well
as on the target nature (Nastasi et al 1996, Sigmund 2006).

We apply the dielectric formalism to calculate the electronic stopping magnitudes, which
is based on the plane-wave (first) Born approximation and consistently accounts for the
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condensed-phase properties of liquid water (Lindhard 1954, Ritchie 1957). In this framework,
a projectile with charge-state q, atomic number z and mass m moving with a kinetic energy
E through a target characterized by its dielectric function, ε(k, ω), experiences a stochastic
slowing down where the average value of the stopping power Sq is given by

Sq(E) = me2

π E

∫ ∞
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Here e is the elemental charge, and ρq(k) is the Fourier transform of the projectile charge
density for the charge-state q, which is calculated according to the modified Brandt–Kitagawa
model (Brandt and Kitagawa 1982, Brandt 1982). In the above expressions, the only magnitude
that depends on the target is the energy-loss function (ELF), Im[−1/ε(k, ω)], which accounts
for the probability that the projectile loses energy producing an electronic excitation with
momentum transfer h̄k and energy transfer h̄ω to the target.

On the other hand, when equilibrium of the projectile charge state is reached, the stopping
power, S, and the energy-loss straggling, �2, can be expressed as a weighted sum over these
magnitudes for the different charge-states q of the projectile, namely

S(E) =
z∑

q=0

φq(E)Sq(E), �2(E) =
z∑

q=0

φq(E)�2
q(E), (3)

with φq(E) being the probability of finding the projectile with a charge-state q, which varies
with the energy and nature of the projectile and with the target. For a proton interacting with
water, φq(E) is determined from a parameterization to experimental data given by Schiwietz
and Grande (2001).

The stopping power and the energy-loss straggling of liquid water for protons are evaluated
analytically using the Mermin energy loss function-generalized oscillators strengths (MELF-
GOS) method (Abril et al 1998, Heredia-Avalos et al 2005) to describe the ELF of the target.
In this model the inner-electron excitations from the oxygen K-shell are described through
atomic GOS (generalized oscillator strengths), whereas the contribution of the remaining
outer electrons are described by fitting the experimental ELF in the optical limit (k = 0)
(Hayashi et al 2000) by a linear combination of Mermin-type ELF (Mermin 1970). The
construction of ELF (or the dielectric response function) from experimental optical data along
with methods to extend them to arbitrary momentum transfer (k �= 0) has been successfully
applied for calculating the inelastic interaction of energetic ions with various condensed-
phase biomaterials (Dingfelder et al 2000, 2008, Emfietzoglou et al 2006, 2009, Tan et al
2010a, 2010b, Abril et al 2010, Scifoni et al 2010a, 2010b). The advantages of the MELF-
GOS methodology consist of a realistic description of the experimental energy-loss spectrum,
the inclusion of the finite lifetime of electronic excitations and an analytical extension of
the ELF to finite momentum transfers without ad hoc suppositions for the k-dependence
of the dielectric function (Emfietzoglou et al 2005, Garcia-Molina et al 2011). The ELF for
liquid water obtained within the MELF-GOS model (Emfietzoglou et al 2008, Garcia-Molina
et al 2009) shows very good agreement with the experimental ELF data for liquid water at all
values of momentum transfer k (Watanabe et al 1997).

In figure 1(a) we show the stopping power of liquid water for protons as a function of their
incident energy. In addition to its importance in SEICS, the stopping power represents the
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(a) (b)

Figure 1. (a) Stopping power of liquid water for protons as a function of their incident energy.
Symbols are the experimental data for liquid water (Shimizu et al 2009, 2010, Siiskonen et al
2011) and for ice (Wenzel and Whaling 1952, Andrews and Newton 1977, Bauer et al 1993). The
curves represent calculations obtained using the MELF-GOS model (Garcia-Molina et al 2009)
(solid line), the data compiled in the ICRU Report 49 (ICRU 1993) (dashed-dotted line) and the
semiempirical SRIM code (Ziegler et al 2008) (dashed line). (b) Energy-loss straggling of liquid
water for protons as a function of their incident energy obtained with the MELF-GOS model. The
horizontal dashed line represents the Bohr energy-loss straggling.

most fundamental magnitude in the clinical dosimetry protocols for proton beam radiotherapy.
Thus, any uncertainty in the stopping power directly translates to uncertainties in patient
dosimetry. The solid line represents our calculations, equations (1) and (3), using the MELF-
GOS model (Garcia-Molina et al 2009), whereas symbols are the experimental data for liquid
water targets (Shimizu et al 2009, 2010, Siiskonen et al 2011) and ice targets (Wenzel and
Whaling 1952, Andrews and Newton 1977, Bauer et al 1993). For comparison purposes, we
also depict as a dashed line the semiempirical results provided by the SRIM code (Ziegler
et al 2008) and as a dashed–dotted line the stopping power compiled in the ICRU Report 49
(ICRU 1993). A more complete compilation of different experimental and theoretical data for
liquid water can be found elsewhere (Paul 2010). We find excellent agreement of our MELF-
GOS model calculations with the newest experimental data in liquid water at high proton
energies (Siiskonen et al 2011), which means that the mean excitation energy I of liquid water
calculated using the MELF-GOS model, I = 79.4 eV (Garcia-Molina et al 2009), is in good
agreement with the trends of the recent results. The spread in the available I-value of liquid
water (see, for example, the compilation in Paul et al (2007a, 2007b)) has been recognized as
particularly disturbing due to its effect on the Bethe stopping power formula and the ion range
(Paul et al 2007a, 2007b, Andreo 2009). The calculated stopping power by the MELF-GOS
model at lower energies differs from the available experimental data of protons in ice, which
could be mainly attributed to differences between the energy-loss spectrum of liquid water and
ice (Garcia-Molina et al 2011). Both SRIM and ICRU data provide good agreement with the
experimental data for ice, because they use a parameterization to these available experimental
data.

We depict in figure 1(b) the energy-loss straggling for protons moving through liquid
water calculated by the MELF-GOS method in a wide range of projectile incident energies
(see the appendix for more details). Unfortunately, in this case there are no experimental data to
compare with. We show by a dashed line the Bohr energy-loss straggling, valid at high energies,
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which is given by �2
Bohr = 4πz2Ze2N , where Z = 10 and N = 3.34 × 1022 molecules cm−3

are the atomic number and the molecular density, respectively, of the liquid water target.

3. Simulation of depth–dose distributions: results and discussion

The SEICS code has been applied to calculate the spatial distribution of the energy delivered by
a proton beam travelling in liquid water as a function of depth. Besides, the energy distribution
of the initial monoenergetic proton beam is obtained at several depths.

Although a detailed explanation of the simulation code is provided in the appendix, in
what follows we comment on its main features. The SEICS code simulates the motion of each
incident proton through the target, taking into account in a detailed manner the interactions
it suffers. The classical trajectory of the projectile is calculated numerically by solving its
equation of motion, by a finite differences algorithm, until it reaches a threshold energy Eth;
we use Eth ∼ 250 eV, although reducing this value is of no consequence in the final depth–
dose distributions. Proceeding in this manner we know the coordinates and the velocity of
the projectile at each time and, subsequently, the deposited energy by the projectile into the
irradiated target, as well as the energy distribution of the initially collimated beam, can be found
as a function of the depth. The code includes the self-retarding stopping force (experienced by
the projectile due to electronic interactions), equation (1), with statistical fluctuations around
the mean energy-loss value provided by the energy-loss straggling, equation (2). The multiple
elastic scattering of the projectile with the target nuclei is also accounted for through a Monte
Carlo algorithm. This latter process is mainly responsible for the angular deflection of the
projectile and also contributes significantly to its energy loss at low projectile energy, i.e.
around the distal part of the Bragg peak. Besides, electronic capture and loss processes are
considered along the projectile path, dynamically varying its charge state as it moves through
the target, which leads to corresponding changes of the stopping power and the energy-loss
straggling.

In all the simulations carried out in this work the stopping power, Sq, and the energy-loss
straggling, �2

q , for each charge-state q, which are input quantities required in the SEICS code,
have been calculated by equations (1) and (2) and using the MELF-GOS method to describe
realistically the ELF of liquid water.

The simulated depth–dose distribution of a 3 MeV proton-beam in liquid water is depicted
in figure 2. In order to visualize how the elastic scattering processes and the energy-loss
straggling affect the spatial distribution of the energy deposition, the solid line in figure 2
shows the depth–dose distribution when all the interactions are included in the simulation,
whereas dashed and dotted lines are the results obtained when removing the elastic scattering
processes or the energy-loss straggling, respectively. We find that the plateau of the Bragg
curve is mainly determined by the electronic stopping force, with the elastic scattering and
the energy-loss straggling having negligible effects before the projectile reaches the region
around the Bragg peak. The removal of elastic scattering in the simulation moves the Bragg
peak distal-edge a bit deeper, since it is the elastic scattering which is mainly responsible for
the projectile slowing down at low energies, i.e. at the end of its trajectory. Removing the
fluctuations of the projectile energy loss along its full path (accounted for by the energy-loss
straggling) produces a deeper (around 2%) and a much sharper peak with a steep fall-off, as
can be observed in figure 2. Therefore, the results depicted in figure 2 clearly indicate that
elastic scattering and mainly energy-loss straggling are crucial to determine the position and
shape of the Bragg peak, although their contribution to the plateau of the Bragg curve is not
critical.
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Figure 2. Depth–dose distribution corresponding to a 3 MeV proton-beam in liquid water. The
solid line is the calculation when all the contributions are included in the simulation, whereas
the dashed and dotted curves are the results obtained when the elastic scattering processes and the
energy-loss straggling are removed, respectively, from the simulations.

Figure 3. (Left axis): average charge state of 0.5 and 1 MeV proton beams as a function of depth
in a liquid water target. For comparison purposes we represent, by a dotted line, the depth–dose
distribution (right axis).

We show in figure 3 the average charge state for 0.5 and 1 MeV proton-beams as a function
of the depth in liquid water; for comparison purposes we also depict the corresponding
depth–dose distributions as dotted curves. Although electron capture and loss processes
between the projectile and the target are taking place during all the projectile travel, a dynamical
equilibrium is quickly reached, and the projectile moves as a bare proton during most of its
trajectory (for energies larger than 250 keV). Only near the Bragg peak and, in particular, at
the end of the trajectory does the average charge of the projectile decrease. This explains
the similar shape obtained for the average charge state of 0.5 and 1 MeV proton beams. It
is worth mentioning that this behaviour could be also observed for higher energy protons:
they travel as protons until the end of their trajectories, when the fraction of neutral hydrogen
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Figure 4. (Left axis): average energy (dashed line) for a 5 MeV proton beam as a function of the
depth in liquid water. The proton energy distributions are depicted by solid lines at several depths.
For comparison the depth–dose distribution (right axis) is shown by a dotted line.

Figure 5. Energy distributions of 5 MeV protons in liquid water at several target depths. The solid
curves correspond to the simulations when all the interactions are included, whereas dotted curves
represent the results without energy-loss straggling.

atoms becomes significant and, therefore, the projectile average charge decreases. It is worth
mentioning that neither multiple scattering nor energy-loss straggling influences the results of
the simulations for the average charge state.

As the energy loss magnitudes depend on the projectile charge state, a detailed evaluation
of the energy delivered by the projectile around the Bragg peak at a nano and/or micrometric
scale must take into account both the electron charge-exchange processes and the fluctuations
in the projectile energy loss at each inelastic collision.

We show in figure 4 the average energy (dashed line) and the energy distribution (solid
lines) corresponding to a 5 MeV proton beam as a function of the depth in liquid water.
For comparison the depth–dose distribution is represented by a dotted line at the right axis.
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Figure 6. (Left axis): FWHM of the energy distributions corresponding to a 5 MeV proton
beam as a function of the depth in liquid water. The solid curve represents the results obtained
when considering all interactions in the simulations, whereas squares and triangles are the results
obtained when elastic scattering and energy-loss straggling are removed, respectively, from the
simulation. For comparison the depth–dose distribution is shown by a dotted line (right axis).

Figure 7. (Left axis): mean radius of a 10 MeV proton beam as a function of the depth in liquid
water. (Right axis): depth–dose distribution is shown by a dotted line.

As expected, the average energy of protons decreases with depth, mainly due to inelastic
collisions with target electrons (i.e. electronic excitations and ionizations). This figure
also shows that the Bragg peak occurs when the energy of the proton beam is lower than
1 MeV, which corresponds to the growing part of the stopping power curve when the projectile
energies diminishes (see figure 1).

The energy distribution of the initially monoenergetic proton beam at several depths
in liquid water becomes broader as the depth inside the target increases, as can be seen in
figure 4. Since the proton energy distribution determines the generation of secondary electrons
in the target, which are mainly responsible for the DNA damage (Nikjoo et al 1998, 2008b,
Champion et al 1998, Uehara et al 2001, Sanche 2005), it is worth considering how the
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different interactions in our simulation affect the proton energy distribution. Note that at the
Bragg peak, the projectile energy distributions are not symmetric since at these depths the
projectiles start to stop, increasing the contribution to histogram bins corresponding to lower
energies.

In figure 5, we depict the simulated energy distribution for a 5 MeV proton-beam at
different depths inside the liquid water target, with emphasis around the Bragg peak. Solid
lines represent the results obtained when all interactions are included in the simulation,
whereas the dotted lines represent the results obtained removing energy-loss straggling from
the simulation code; the results obtained when multiple scattering is not taken into account
are almost indistinguishable from the full simulation curves. The results show that elastic
scattering processes do not change the projectile energy distribution to any significant extent,
whereas energy-loss straggling (accounting for the fluctuations in the projectile energy loss) is
mainly responsible for the broadening of the proton energy distribution. Note that the increase
in the fraction of histories observed at the low-energy side of the proton energy distribution at
360 μm (corresponding to the distal part of the Bragg peak) can be attributed to the significant
fraction of ‘almost’ stopped projectiles at such depth.

The full width at half maximum (FWHM) of the proton energy distribution as a function
of the liquid water depth is shown in figure 6, as well as the depth–dose distributions (dotted
line) for the same system as in figure 5. The FWHM is depicted by a solid line when
all the interactions are considered in the simulation, whereas squares and triangles are the
results obtained when the simulation does not include multiple scattering and energy-loss
straggling, respectively. No significant differences in the FWHM are observed whether or not
elastic scattering is included in the simulations; however, sizeable differences appear when
considering or not energy-loss straggling.

In order to analyse how the radial (i.e. lateral) broadening of an initial pencil beam evolves
inside the target, we have depicted in figure 7 the mean radius of a 10 MeV proton beam as a
function of the depth in liquid water. Due to multiple elastic collisions the mean radius of the
beam follows an increasing trend as a function of depth travelled in the medium, which is nearly
a parabolic function. The mean radius of the proton beam becomes approximately constant
near the Bragg peak, with a sharp reduction at the distal region, which can be attributed to the
fact that only (few) projectiles travelling in almost a straight path reach these deep regions. As
most of the projectiles deviate from their initial direction, they are stopped at lower depths.

4. Conclusions

We have obtained the spatial distribution of the energy deposition by proton beams in liquid
water using the simulation code SEICS, which includes the stopping force due to the target
electronic excitations induced by the projectile and their fluctuations in the energy loss, the
multiple elastic scattering with the target nuclei and the changes in projectile charge-state due
to electronic capture and loss processes.

The inelastic energy loss magnitudes for proton beams in liquid water, such as the
stopping power and the energy-loss straggling, which are basic inputs for any simulation
code, are calculated using a solid-state perspective of the beam–target interaction within the
dielectric formalism together with the MELF-GOS methodology to properly describe the ELF
of liquid water. Our calculated stopping power agrees very well with recent experimental data
(Siiskonen et al 2011), providing a validation of the mean ionization energy of liquid water
(I = 79.4 eV) given by our model.

We have found that the position of the Bragg peak is mainly determined by the stopping
power of the projectile, whereas its shape strongly depends on the energy-loss straggling.
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The multiple scattering processes only modify the distal part of the Bragg peak, at the end of
the projectile trajectories. Also, the average charge state of the projectile has been obtained,
concluding that the projectile travels most of the time as a bare charge, but around the Bragg
peak the average charge decreases, due to a significant presence of neutral hydrogen.

The energy distribution of the proton-beam at several depths is also calculated by the
simulation code SEICS. We find that elastic collisions are practically irrelevant; however, the
proton energy profile strongly depends on the statistical fluctuations of the projectile slowing
down, which is accounted for through the energy-loss straggling.

The radial broadening of the proton beam, mainly due to elastic collisions, increases with
the depth, according to a parabolic dependence.

From these simulations we conclude that for a realistic evaluation of the Bragg peak at
the microdosimetric level a detailed account of the electronic response and condensed-phase
excitation properties of the target is necessary, as for example provided by our simulation
code SEICS. Further improvements with the addition of secondary electron generation and
transport, as well as an extension to higher proton energies (with the inclusion of nuclear
interactions) are underway.
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Appendix. SEICS code

The SEICS code uses molecular dynamics and Monte Carlo techniques to follow the motion
of a charged projectile through a target (Heredia-Avalos et al 2007a). This procedure provides
the position and velocity at any time along the trajectory of each projectile through the target.
Therefore, it is straightforward to obtain the beam energy and spreading as a function of
the depth, or the spatial distribution of deposited energy, among other quantities. Although
the SEICS code can be applied to any projectile–target combination, including molecular
projectiles and compound targets, in what follows we will particularize the discussion for the
case of monatomic ions moving through a liquid water target.

Electronic stopping force

Leaving aside for a moment the elastic collisions between the projectile and the atomic nucleus
(to be discussed in the next section), the force that acts on the projectile is given by the electronic
stopping force, which depends on its charge state and velocity, and arises from the inelastic
collisions between the projectile and the target electrons. Here we use a model based on the
dielectric formalism to calculate this electronic stopping force (Lindhard 1954, Ritchie 1957).
Once the stopping force is provided, the slowing down of the projectile is accounted for by
numerically solving its equations of motion at discrete time intervals �t. Due to the stochastic
nature of the interaction between the target electrons and the projectile (with charge-state q),
there are fluctuations in the force felt by the latter; therefore, we characterize the stopping
force by an average value, the well-known stopping power, Sq, and the energy-loss straggling,
�2

q , given respectively by equations (1) and (2).
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In the stopping magnitudes, the ELF over the whole k–ω plane is described by the MELF-
GOS method, where a split between the outer electron excitations and the inner shell electrons
is made (Abril et al 1998, Heredia-Avalos et al 2005):

Im

[ −1

ε(k, ω)

]
= Im

[ −1

ε(k, ω)

]
outer

+ Im

[ −1

ε(k, ω)

]
inner

. (A.1)

The most external electrons are modelled by a sum of Mermin-type ELF fitted to available
experimental ELF at the optical limit (k = 0), namely

Im

[ −1

ε(k, ω)

]
outer

=
∑

i

AiIm

[ −1

εM(ωi, γi; k, ω)

]

(ω − ωth,i ), (A.2)

where ωi , γi and Ai are the fitting parameters related to the position, width and relative intensity
of the peaks observed in the experimental optical ELF spectrum; ωth,i is a threshold energy
(7 eV for liquid water). εM is the Mermin dielectric function (Mermin 1970), which includes
the damping of the electronic excitations through phonon-assisted electronic transitions, and
is given in terms of the Lindhard dielectric function εL (Lindhard 1954) by the following
expression:

εM(k, ω) = 1 +
(1 + iγ h̄/ω) [εL(k, ω + iγ ) − 1]

1 + (iγ h̄/ω) [εL(k, ω + iγ ) − 1]/[εL(k, 0) − 1]
. (A.3)

The inner shell electron excitations preserve their atomic character. Therefore, they are
described by the GOS in the hydrogenic approach

Im

[ −1

ε(k, ω)

]
inner

= 2π2N

ω

∑
j

αj

∑
nl

df
j

nl(k, ω)

dω

(ω − ωioniz,nl), (A.4)

where N is the molecular density of the target (for water N = 3.34 × 1022 molecules cm−3),
df

j

nl(k, ω)/dω is the hydrogenic GOS corresponding to the (n, l)-subshell of the j th element,
ωioniz,nl is the ionization energy of the (n, l)-subshell and αj indicates the stoichiometry of
the j th element in the compound target. For liquid water, the K-shell electrons of oxygen are
treated as inner electrons with a binding energy of 540 eV.

Also, the MELF-GOS methodology imposes that the fitted ELF must verify physical
constraints, such as the f -sum rule and the Kramers–Kronig (or perfect) sum rule, which
guarantee correct behaviour at high and low energy transfer, respectively. Besides, if the sum
rules are satisfied at k = 0 they will be verified at every momentum transfer.

In the simulation we take the modulus of the electronic stopping force felt by the projectile
(with charge state q) from a Gaussian distribution with mean value Sq, and standard deviation

σ =
√

�2
q

/
�s, (A.5)

with �s = v�t being the distance travelled by the projectile (with velocity v) in a time step �t

used to discretize the equations of motion. Therefore, according to the Box–Muller procedure
to generate a Gaussian distribution (Box and Muller 1958), the electronic stopping force on
the projectile enters the simulation code as

→
F = −[Sq + (�q/

√
�s)

√
−2 ln ξ1 cos(2πξ2)] v̂, (A.6)

where v̂ is the unit vector of the instantaneous projectile velocity �v. The symbols ξi (with
i = 1, 2, . . . ) refer to random numbers uniformly distributed between 0 and 1 (Press et al
1997), with the value of the subscript i denoting each time a random number ξi is used in the
simulation.
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Elastic scattering

Elastic scattering due to collisions between the projectile and the target atomic cores (Möller
et al 1975, Zajfman et al 1990) are simulated in SEICS in a manner that provides the projectile
scattering angle and the corresponding elastic energy loss at each collision. In this treatment,
the path length L of the projectile between two successive collisions with the target atoms is
given by

L = − ln ξ3∑
i μi

, (A.7)

where μi is the projectile inverse mean free path for having an elastic interaction with the
i-atom of the target compound. Therefore

∑
i μi is the total macroscopic cross section for

having an elastic collision with a target nucleus.
Assuming that each target atom is an effective scattering centre with a spherical volume

with radius r0 = 1/(2N1/3), where N is the target molecular density, then we can write

μi = Niπr2
0 = π

4N2/3
Ni, (A.8)

where Ni is the atomic density of the i-atom type in the target compound. For a liquid water
target we have NH2O = NO = NH/2.

In order to determine the type of target atom that undergoes the collision with the projectile,
we suppose that the collision probability Pi with the i-atom type is proportional to the fractional
contribution made by each atom to the total cross section (Turner et al 1985):

Pi = μi∑
j μj

. (A.9)

Therefore, the projectile collides with the i-atom type of the target when the following condition
is satisfied:

i−1∑
j=1

Pj � ξ4 <

i∑
j=1

Pj . (A.10)

On the other hand, the polar scattering angle ϑ relative to the projectile direction of motion
is given as a function of the parameter η through

cos ϑ =
(

1 − 2Miη
2

(m + Mi)E2
i

)[
1 − 4mMiη

2

(m + Mi)2E2
i

]−1/2

, (A.11)

where m is the projectile atomic mass and Mi is the atomic mass of the i-atom type of the
target compound; Ei is the corresponding reduced energy defined by

Ei = aU,iMi

z Zi(m + Mi)
E, (A.12)

with E being the projectile instantaneous kinetic energy, z and Zi being the projectile and
i-atom type target atomic numbers, and aU,i being the corresponding universal screening
length (Ziegler et al 2008):

aU,i = 0.8853

z0.23 + Z0.23
i

. (A.13)

The value of the parameter η in equation (A.11) is calculated using the scattering cross section
in reduced units:

J (η) = J (Ei ) +
1 − ξ5

4N2/3 a2
U,i

. (A.14)
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J (η) can be evaluated using

J (η) = J (η0) +
∫ η

η0

dη′ f (η′)
η′2 , (A.15)

f (η) being a function given by Meyer (1971) and we assume η0 = 10−4 as a fixed lower
integration limit. Note that equation (A.14) is independent of η0, because both J (η) and
J (Ei ) depend on η0 through equation (A.15). We have evaluated the function J (η) according
to equation (A.15) and tabulated its values in order to obtain the value J (Ei ) required in
equation (A.14) to calculate J (η); then, the value of η, used in equation (A.15) to determine
the scattering angle θ , is obtained by interpolation of the tabulated function J (η).

The azimuthal scattering angle ψ relative to the projectile direction of motion is simply

ϕ = 2πξ6. (A.16)

Finally, the energy loss in the scattering process is obtained through

T = 4mzZi

aU,iEi (m + Mi)
η2, (A.17)

so the modulus of the projectile velocity after the elastic nuclear collision takes place will be

v′ =
√

v2 − 2T

m
. (A.18)

The geometry of the scattering process is depicted schematically in figure A1. We
define the projectile direction of motion after the n-collision by the polar angle 
n−1 and
the azimuthal angle �n−1 in the laboratory frame of reference. The path length L until the
next elastic collision is determined by using equation (A.7); after an elapsed time L/v, the
n-collision takes place and we determine the i type of target atom that is involved in
the collision according to equation (A.10). Then, the scattering angles ϑ and ϕ, with respect to
the direction of motion, are obtained using equations (A.11) and (A.16), respectively, and the
new direction of the projectile after the n-collision is obtained through (Zajfman et al 1990)

cos 
n = −sin ϑ cos ϕ sin 
n−1 + cos ϑ cos 
n−1 (A.19)

cos �n = 1

sin 
n

(sin ϑ cos ϕ cos 
n−1 cos �n−1

− sin ϑ sin ϕ sin �n−1 + cos ϑ sin 
n−1 cos �n−1) . (A.20)

The modulus of the projectile velocity after the n-collision is obtained using
equation (A.18). Once the velocity (modulus and direction) is obtained after the n-collision,
the next collision takes place following the same steps that have been explained in the preceding
paragraphs.

Electron capture and loss

We have also included in SEICS the capture and loss of electrons by the projectile (Heredia-
Avalos et al 2007a). In the model we have used, the path length of the projectile between two
successive electronic capture or loss events is given by

LC&L = − ln ξ7

μC + μL
, (A.21)
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Figure A1. Schematic geometry of two successive elastic collisions, separated by a distance
L, given by equation (A.7). The angles in the laboratory frame of reference that determine the
projectile direction of motion before (
n−1, �n−1) and after (
n,�n) the n-collision are related to
the angles (ϑ, ϕ) with respect to the instantaneous velocity through equations (A.19) and (A.20).
During the path L between two successive elastic collisions, the projectile (with charge state q)
experiences a retarding force F that depends on its instantaneous velocity along each infinitesimal
segment �s, as given by equation (A.7); see text for more details.

where μC and μL are the inverse mean free paths for electron capture and electron loss,
respectively, both depending on the charge-state q of the projectile. The inverse mean free
path for electron loss μL can be evaluated through

μL(q → q + 1) = NσL(q → q + 1), (A.22)

where q → q + 1 denotes that the projectile changes its charge state from q to q + 1.
In the model we have used, we assume that the electron-loss cross section σL is proportional

to both the geometrical cross section σ of the projectile and its bound electrons,

σL(q → q + 1) = (z − q)σ, (A.23)

where we estimate the geometrical cross section of the projectile using

σ = π〈r〉2 = 4π�2, (A.24)

with 〈r〉 = 2� being the average distance between the bound electrons and the atomic nucleus
in the modified Brandt–Kitagawa model (Brandt and Kitagawa 1982, Brandt 1982).

If multiple-electron processes are neglected, the inverse mean free path for electron
capture can be obtained from the equilibrium relation

μC(q + 1 → q) = φ(q)

φ(q + 1)
μL(q → q + 1), (A.25)

where φ(q) and φ(q + 1) are the equilibrium fractions of the q and q + 1 charge states,
respectively. These charge-state fractions φ(q) should be evaluated depending on the projectile
atomic number. For hydrogen projectiles,

φ(0) + φ(+1) = 1, (A.26)

φ(+1) = 〈q〉, (A.27)

where 〈q〉 is the average charge state. For helium projectiles, the conditions are

φ(0) + φ(+1) + φ(+2) = 1, (A.28)

φ(+1) + 2φ(+2) = 〈q〉, (A.29)
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〈q〉2φ(0) + (1 − 〈q〉)2φ(+1) + (2 − 〈q〉)2φ(+2) = σ 2
q , (A.30)

with σq being the standard deviation of the charge-states distribution. The charge-state
fractions φ(q) for heavier projectiles can be calculated assuming a Gaussian distribution

f (q) = 1√
2πσ 2

q

exp

[
− (q − 〈q〉)2

2σ 2
q

]
, (A.31)

where φ(q) are then evaluated using

φ(q) = f (q)∑z
q=0 f (q)

, (A.32)

in order to ensure that the charge fractions satisfy the normalization condition∑z

q=0
φ(q) = 1. (A.33)

In all these cases, both the average charge-state 〈q〉 and the standard deviation σq are obtained
through a fit to experimental data (Schiwietz and Grande 2001).

The probabilities of electron loss PL or electron capture PC by a projectile with charge-
state q are proportional to the corresponding inverse mean free paths

PL(q → q + 1) = μL(q → q + 1)

μC(q → q − 1) + μL(q → q + 1)
(A.34)

PC(q → q − 1) = 1 − PL(q → q + 1). (A.35)

Therefore, in order to determine the new projectile charge-state q ′ we use the following
condition:

q ′ =
{
q + 1 for ξ8 � PL(q → q + 1)

q − 1 for ξ8 > PL(q → q + 1).
(A.36)

In summary, according to this model we obtain the path length LC&L using
equation (A.21); after an elapsed time LC&L/v, either an electronic capture or loss event
takes place determined according to equation (A.36).
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