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Recent experimental data on electron-energy-loss spectrometry of the interaction between small
crystallites and beams traveling at a fixed beam-solid surface distance are analyzed in terms of the
surface and bulk excitation modes of parabolically shaped wedges. The probability of excitation of
the surface modes is calculated, in the nonretarded limit, for an electron traveling parallel to the
wedge surface, either outside or inside the dielectric wedge. The main features of available experi-
mental data for MgO crystallites can be explained by the theory.

I. INTRODUCTION

In recently reported experiments with scanning
transmission electron microscopes (STEM), Marks,! Cow-
ley,> and Wheatley et al.’ have measured the spectra of
energy losses of electron beams interacting with small
crystallites of various oxides (MgO, NiO, Al,O;, etc.).
Given the complex dielectric function of these materials,
one might try to relate the spectrum of surface and bulk
excitations that the dielectric is able to sustain, with the
spectrum of electron energy losses. The dielectric wedge
may sustain surface electromagnetic waves that are local-
ized within the vicinity of the edge, and propagate freely
along it.

The novel character of the experiments lies in the at-
tempt to probe the surface plasmon field directly by keep-
ing the electron beam traveling, either internally or exter-
nally to the wedge but close to the wedge surface, and at a
fixed impact parameter.

The interaction of electron probes with semi-infinite
solids has been tackled theoretically.* This work is one at-
tempt to analyze the aloof excitation of the surface
plasmon field of a solid having a given nonplanar boun-
dary.

The crystallites which are bombarded in the experi-
ments"? are of cubic symmetry, about 20—200 nm in size,
and the electron beam is oriented along the principal crys-
tallographic directions. One might try to model these
crystallites as sharp-edged wedges.” The calculation of
the dispersion relations for electrostatic modes of a
sharp-edged wedge, neglecting spatial dispersion, is due to
Dobrzynsky and Maradudin.® They find that the eigen-
frequencies are independent of wave number and depend
continuously on the separation constant for the Laplace
equation. Davis’ has considered the electrostatic modes
of a hyperbolic cylinder and has concluded that the results
in Ref. 6 are associated with the sharpness of the edge of
the wedge. An effect equivalent to the rounding of the
edge of the wedge can also be achieved by using a nonlo-
cal dielectric function.?

The mathematical analysis of the sharp-edged wedge is
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difficult, the functions involved are very cumbersome to
deal with, and certain divergences in the fields arise.”’
On the other hand, the use of a hyperbolic-wedge
cylinder’ might seem to be a useful model of the experi-
mental situation, since the sharp-edged wedge is its natur-
al limit. However, the mathematical analysis in terms of
elliptic cylinder coordinates leads to differential equations
which Davis’ solves numerically.

Due to all these facts, and in order to work with analyt-
ical solutions, we shall consider the case of a parabolic
wedge, where analytical solutions of the wedge surface
modes, both in the nonretarded!® and retarded!! limits are
available. Although this system does not contain the
sharp edge as a limit, it will allow us to draw useful infor-
mation on the experiment.

We shall calculate the energy-loss function and the ex-
citation probability of the wedge modes, due to a pointlike
(8-function) electron beam passing parallel to the dielec-
tric wedge surface. We shall limit our calculations to the
nonretarded limit. The theoretical predictions are then
compared with experimental data, and it is shown that the
main features of the experiment reported by Marks' can
be explained by the theory.

II. ENERGY LOSS AND EXCITATION PROBABILITY

Take a dielectric wedge infinite in the z direction, with
a parabolic-cylinder boundary. The study of the electro-
static edge modes along a parabolic wedge is due to
Eguiluz and Maradudin,'® who solved Laplace’s equation
in the appropriate coordinate system. Here we shall only
give the main steps in the derivation of the electrostatic
potential originated as a result of an electron beam travel-
ing along the wedge surface, and parallel with the edge.

”ll;he parabolic cylinder coordinate system is defined
by

x=£n, —w<f<w, 0<n<w0 v
y=3(*—£), —w<f<ow,0<n< o (1)
zZ=2Z.
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The dielectric wedge occupies the region 0<m1 <7y,
— o0 << o (see Fig. 1), and is characterized by an iso-
tropic dielectric function e(w).

We consider first the case of a beam traveling external
to the wedge, in vacuum (e=1), with a position defined
by T;=(&;,1:,2;), where 17; >1¢ and — w0 <&; < 0. We
solve Poisson’s equation for the potential

V2(T, )= —4mp(T,0) , , 2)

where the charge density associated with an electron
beam, which is described classically by a 8 function, and
moving in the z direction with a velocity v, is

p(F,1)=e8(F—T;)

= §(E—&)8(n—n,;)8(z —vt) . 3)

§2 + 1’2
e is the electron charge.
It is convenient to work in Fourier space:

$(&,m,2,0)= (_2;_)2 J7 dwe=m [ dgepigm,qu0) .

Then Poisson’s equation becomes, in parabolic-cylinder
coordinates, with ¢ =¢(&,n,q,w),

6 3% a2
a§2+an2 (&°+n*)g“d
_ 0, n<no (5a)

—8m%ed(w —qu)S(E—E)8(n—n;), n>n. (5b)

The solution for the electrostatic potential inside the
dielectric wedge is then

$E Mg =S AFEWin+1v3gn)  (6a)

n=0
and outside the wedge

¢out= ¢ind + ¢inhom . (6b)

¢'"hom the particular solution of the inhomogeneous Eq.

(43 (5b), is given by
¢inhom(§r7];q:W)=2 Cn Vin +%, V 2q n)U(n +%,1/ Zq n; )Fn(é')’ n<; (6c)
=§C,.V(n +3,V2g0)U(n +5,V2g 0)F,(£), 7> | )

with
C,=41"2q 1 %e8(w —qu)F,(&;) .

#™ in Eq. (6b) is the potential acting on the electron due
to the wedge (the induced or reaction field),

¢"E,m,q,w)= B, F,(E)U(n ++,V2gn) .  (6e)
n
" _%‘l, _g,
-5
° i >0
n< i
FIG. 1. Parabolic-cylinder coordinates. The parabola

y =+(—x2/n3+n3) defines the dielectric wedge. The wedge
occupies the region 7 < 7)o, and the beam travels either in vacu-
um (7> 1) or through the wedge (7 <7,), through the point
(gi’ Nis> Zi ).

I

U and V are parabolic-cylinder functions,!> and the func-
tion F,(£) contains the Hermite polynomial'® of nth order
H,(x), ‘

Fo(§)=[(g/m)'"*/(2"n )] exp(—q&2/2)H (¢ /%€) .

)]

The coefficients 4, and B, in Egs. (6a) and (6e) follow

from the continuity of the potential ¢ and the normal

component of the displacement field (€ d¢/d7) across the
boundary (n=m¢). We will only need B,:

B,=—C, e(w)—1
f(w)Von-— V()U(I)
where Vo=V(n++,V2q1,), Vo=dV,/dn,, and simi-
larly U, and Up, and U;=U(n++,V2q7;). The
dispersion relation for the static modes is the result of
equating the denominator in Eq. (8) to zero,'%i.e.,

UVoVo » (8)

We seck the dissipative component of the force acting on
the electron moving near the wedge surface. We neglect
quantum recoil effects and assume that v is constant (i.e.,
the external charge acts as an infinite source of energy
and momentum). The negative of the dissipative com-
ponent of the induced force is the specific energy loss!*

ind
_AdW _ e 3¢™ (10)
dz v 0t |P=T,0

and, from Egs. (4), (6), (8), and (10), integration over g
gives
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e-1 (11

GVon—VoU(')

(with ¢ =w /v replaced in the arguments of the functions U, ¥, and F,). Now, the excitation probability is given by'’

172
aw L < o 1252 2 /
— L =2ie? | 1, ,Z'of" dw w'2FH &)UV Vy
dw w g2p
dz o dzaw ™M
and from Egs. (11) and (12)
172
dxp 202 | 7 < . —1/252 2 .
m:—-ﬁ— —-3- n§0w F,,(g,')Ui V()VQ Im

where Im( -
€ << €], One gets in this particular case
d’P_ 4me*

dzdw  #? oo

The zeros of the argument in the 8 function provide'® the
electrostatic modes that the dielectric can sustain (eigen-
modes w, [Eq. (9)]). Writing Eq. (13b) as

d’p )
= 1,8(w—w,), 14
dz dw néo nd(w —w,) (14)

the coefficient I, gives the intensity of the nth mode w,
in the limit Im(€)—O0.

We consider now the case of a beam traveling through ,

the wedge, but parallel to the edge. The analysis is quite
similar to that described above and we only give the main
differences and results. In Eq. (2) one replaces p—p/e,
and in Eq. (5b), e—e/e(w). The greater than/less than
signs in the right-hand side terms of Eqs. (5a) and (5b)
should also be reversed. The electrostatic potential inside
the wedge now contains a further term due to the inhomo-
d’p

)
9e? = . 172
e 2 v
== FX&)w: | | 22
dzdw  #p? ,Eo w51V [ w ] Vo
With the assumption €, << €}, this expression becomes

172
d*p 417'e 2 ViUs
Trdn = EOF WDV | = [U,— 2

ViU

v

eVoUo—VoUp

- ) stands for the imaginary part. This expressmn holds for 7; > 1.

2 FAENUHV,/Up)8(eVoUy—VoUp) .

[Ji——JIm

(12)

e—1 (13a)

Writing e=¢€,+i€,, and assuming

(13b)

f :
geneity in Poisson’s equation, which the beam introduces.
The potential inside the wedge is then given by

$™E, M qw) = Ay Fo(E)V (n ++,V2g 1)+ gimom |
| (15a)

This expressmn replaces Eq. (6a). The inhomogeneous
solution ¢™'°™ is still given by Eq. (6c), and

A, =—C, _ €1
€ V(') U 0o— Vo U (’)
The coefficient C, entering Eq. (15b) is the same C, in
Eq. (6d), with the replacement e —e /e(w).
Now both terms in Eq. (15a) contribute to the specific
energy loss of the beam traveling through the wedge. We
only give the excitation probability, for 7; <7,

V,UoUl . (15b)

1 ViUo —2
—— |+ Im . (16a)
€ VO GV(I)Uo—V()Ub
V:U
8(61)+ 8(€1V0U0—U0V0) (16b)

As expected, the excitation probability in Egs. (16) contains terms corresponding to both the excitation of the bulk [the
term Im(—1/€) or 8(¢;)] and of the surface modes of the wedge. Therefore, if one wishes to probe the surface excitation
field, w1thout interference from the bulk modes, the probe has to be kept external to the wedge, as was done in the experi-
ments.! =3 One can calculate the specific energy loss from Egs. (12) and (16).

Note in Eq. (9) that the variables v, 17, determine the surface eigenmodes w, that are excited for each n, but naturally
these modes do not depend on the electron path (£;,7;).- Also, for a fixed-electron beam energy and target geometry, the
only variables in the excitation probability in Egs. (13) and (16) are those determining the electron path (£;,7;).

It is instructive to compare Egs. (13a) and (16a) with the excitation probability quoted by Marks! for an electron beam
traveling parallel with a semi-infinite dielectric occupying the region y <0, and at a distance y; from its surface which

is3,l6 18

2¢? —1
——1Im +1 Ko(2wy; /v) for y; >0, | .
_dp (17
dzdw 2 2w 2wy
—1 v wy, e—1 wy;
2e 3 {I {—_ ] In ¢ —Ko : I le+l ]Ko - v' fory, <0
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k. is a cutoff wave number (k. ~0.1 nm~1).

In Egs. (17) K, is the modified Bessel function of
zeroth order. The surface energy-loss function
Im[(e—1)/(e+1)], calculated from experimental data for
‘the dielectric function for MgO,!” did not predict the sur-
face plasmon peak at 18 eV, which was, however, ob-
served in the electron-energy-loss-spectrometry (EELS)
data.! We will see in the following that this peak and oth-
er features of the experiment arise clearly from the para-
bolic model of the wedge.

Eguiluz and Maradudin!® showed that in the limit of
small wavelengths (g— ) the dispersion relation of the
edge modes, Eq. (9), coincides with the dispersion relation
(e=—1) for surface plasmon modes bound to the plane
interface between a dielectric medium and vacuum. Con-
sequently, the surface energy-loss function in Egs.
(13a) and (16a) reduces to the surface energy-loss func-
tion in Eq. (17), Im[(e—1)/(e+1)], in the limit
02w /)2 > oo

III. ANALYSIS AND COMPARISON
WITH EXPERIMENT

We first briefly recall the principal results of the inves-
tigations carried out by Marks' and Cowley.?

(i) The overall intensity in the EELS spectrum (and
therefore also the intensity of a given peak) decreases
when the electron path goes from a lateral surface to the
edge of the crystal (cf. Fig. 2 in Ref. 1 and Fig. 4 below).

(ii) For electron paths along a lateral surface, the inten-
sity of a given peak first increases and then rapidly de-
creases exponentially as the beam-surface distance goes
from inside to outside the wedge (cf. Fig. 3 in Ref. 1 and
Fig. 5 below).

(iii) For electron paths both parallel to the lateral sur-
face and along the edge, a surface plasmon at ~ 18 €V was
observed, together with a strong enhancement of the low
frequencies (in comparison with the spectrum for electron
paths through the bulk, cf. Fig. 4 below). The 18-eV peak
was attributed by Marks! to a genuine surface resonance,
in contrast to Cowley’s” interpretation of it as due to tran-
sition radiation.

Now we analyze the expressions (13) and (16) for the
excitation probability For fixed § ; and increasing 7;, the
only factor in Eq. (13a) that varies then, for given n, is
U?. The function

U;=U(n +T,(ZIU/U)1/27],')

decreases exponentially for increasing 7;, for all n, and
for (2w /v)'?y; >>1 one has'®

—wni/v)v/Quwa)]" ! .

Since n?=y;+(y2+xH'"% according to Egs. (1), the
probability of excitation decreases exponentially with dis-
tance as in Marks’ experiment [cf. (ii) above]. In particu-
lar, for increasing dlstance away from the edge (along the
y axis in Fig. 1), §, =x;=0, 5}=2y;, and the y; depen-
dence in Eq. (13a) is

d’P &

dzdw ™ >

U? ~exp(—

“exp( —2wy; /v)[v/(4wy;)]* 1.
n=0,2,4,...

For comparison, Eq. (17) gives, for large y; >0,
2

dz dw

In order to compare the experimental results with the pre-
dictions of Egs. (13) and (16), one has to determine the pa-
rameters 7)o and (&;,7;). Figure 2 shows wedge profiles
for different values of the parameter 17y, We are trying to
model a sharp-edged wedge with a parabolic wedge, and
in Marks’ experiment! the electron beam travels at a dis-
tance ~2 nm from the edge or surface of the wedge.
From this distance, the appearance of the parabolxc
wedges in Fig. 2 is nearly flat for values of 170> 10 nm,
and the wedge edge looks sharper for ?70 <1 nm. The pre-
cise value of 7 is not crucial in the calculations to follow,
and we have chosen a value 73=0.5 nm.

We have evaluated the excitation probabilities in Eqgs.
(13a) and (16a) with the complex dielectric function for
MgO taken from experimental data,'” and for an 80-keV
electron beam as in the experiment.! Figure 3 shows the
excitation probability for a beam traveling parallel to the
edge of the wedge and in front of it, at a distance of 2 nm.
Curve a corresponds to a wedge with well-defined edge,
for a parameter 73=0.5 nm, and b is the prediction for a
nearly flat wedge, with §3=20 nm. This latter case,
which has been reduced by a factor of 5, is very similar to
the flat-surface prediction in Eq. (17). Note that as the
wedge parameter 71% increases and the edge of the wedge
flattens, the excitation probabilities increase in intensity,
and also the peaks corresponding to larger #w values
(> 16 eV) become wider.

The resonance at #iw ~ 18 eV shown in Fig. 3 (curve a)
was clearly observed in the experiments,l’2 and is not so
distinctly apparent in the predictions for the flat semi-
infinite model of the wedge (cf. Ref. 1 or curve b in Fig.
3). Cowley? attributed this ~ 18-V mode to transition ra-
diation, but its origin as a genuine surface resonance is-

o exp( —2wy; /v)[v /(Twy; )]V .

Ylnm)

FIG. 2. Wedge profiles for different values of the parameter
73. Note that in the experiments (Refs. 1 and 2), the beam
passes at a distance ~2 nm from the wedge.
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FIG. 3. Excitation probability of surface modes, Eq. (13a),
for aloof electrons traveling in front of the edge of the wedge, at
a distance ~2 nm. The parameter %3 is (a) 0.5 nm, (b) 20 nm.
The latter case resembles a flat semi-infinite wedge. The proba-
bility in curve b has been divided by a factor of 5. The electron
beam energy is 80 keV. (For #iw >21 eV both curves overlap
and the curve a has not been plotted for clarity.)

clear from the present model calculations.

For a wedge boundary defined by 13=0.5 nm, Fig. 4
shows a comparison between the excitation probabilities
of the wedge when the electron beam passes in front of
the edge (curve E, which is the same as curve a in Fig. 3)
or along one of its lateral surfaces (curve F). In both cases
the distance from the beam to the wedge is ~2 nm, and in
the interaction with the surface (curve F) the beam dis-
tance to the edge is taken to be ~20 nm. Also shown in
Fig. 4 is the excitation probability (reduced by a factor of
4) for a beam traveling through the bulk of the wedge,
along its symmetry plane (curve B), and at a distance ~20
nm from its edge. The results in Fig. 4 may be compared
with the experimental findings in Fig. 2 of Ref. 1. The
agreement both in the relative intensities of the bulk, face,
and edge spectra and in the location of the peaks is very
satisfactory. The details of the experiment are reproduced
by our model calculations. For instance, in the F spec-
trum, the intensity of the ~ 18-eV peak is greater than the
intensity of the ~13-eV peak. Also, the ~18-eV peak in
the F spectrum shifts to ~22 €V in the B spectrum. The
bulk plasmon for MgO is located at!” #iw, ~22 eV, as seen
in Fig. 4.

As mentioned in (ii) above, Marks! also investigated the
excitation probability of the wedge for electron beam posi-
tions ranging from ~ 10 nm with respect to the wedge
surface, but inside the wedge, up to ~ 10 nm outside the
dielectric wedge surface. The beam path in the experi-
ment was far from the edge of the wedge, and the dimen-
sions of the cubic crystal were ~100 nm. We have
evaluated the corresponding expressions, (13a) and (16a),
for 93=20 nm, £?~80 nm, and 7?~20 nm, and the re-
sults are shown in Fig. 5. In agreement with the experi-
mental results [Fig. 3 in Ref. 1, cf. also point (ii) above],
the excitation function decays exponentially with distance,
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FIG. 4. Excitation probability of surface and bulk modes,
Egs. (13a) and (16a), for electrons traveling (E) along the edge,
at a distance of 2 nm from the edge; (F) along a lateral surface,
at a distance of 2 nm from it; and (B) through the bulk of the
wedge, along the symmetry plane and at a distance ~20 nm
from the edge. The spectrum (B) has been divided by a factor of
4. The wedge parameter is 73=0.5 nm and the electron beam
energy is 80 keV. '
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FIG. 5. Excitation probability, for given modes #w, Egs.
(13a) and (16a), for electron beam paths at varying distance d
from the lateral surface of the wedge. The electron paths are
far away from the edge, (7?~20 nm) and range from inside
(d <0) to outside (d >0) the wedge. Wedge parameter 15=20
nm. Electron energy is 80 keV.
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the slope being larger the larger the energy window #w.
The relative intensities of the different curves are also in
agreement with the experimental findings, the curve for
#w =10 eV crossing the other curves shown in Fig. 5.
There is only some discrepancy in the region close to the
surface (distance ~0 nm in Fig. 5). In the experiment the
transition from inside to outside the wedge is broader than
Fig. 5 shows. One should note, however, that our model
calculations assume a 8 function for the cross-sectional
area of the beam, whereas the experimental value of this
cross section was rather large, ~2 nm. We recall also
that the spectrometer resolution in Marks’' experiment is
3 eV. It is interesting to note, finally, that whereas the ex-
pression for the excitation probability of an electron trav-
eling inside the wedge and parallel to the plane boundary,
Eq. (17), contains a cutoff wave vector'® and, furthermore,
the function K, is divergent for zero argument,'® none of
these features arise in the present calculations based on a
parabolic-function expansion of the electrostatic potential.
This expansion is rapidly convergent for beam paths in
front of the edge (i.e., £;=0), and, furthermore, in this
case, the odd-n terms are identically zero because the Her-
mite polynomials in Eq. (7) cancel. For electron beam po-
sitions far away from the edge, we have taken up to eight
terms in the expansion in Egs. (13) and (16).

IV. FINAL REMARKS

We have investigated here the case of a beam traveling
parallel to the edge of a parabolic wedge both in vacuum
and through the medium. Other configurations, like
beam trajectories at constant z, trajectories intersecting
the tip of the wedge, or reflecting at the lateral surface,
may also be of interest in the analysis of the experiment.
Note also that the experiment has been performed with a
relatively broad probe, ~2 nm in diameter, which is com-
parable to the distance from the beam to the wedge
whereas the model calculations developed in this paper as-
sume a 8 function for the STEM probe. This is only a

crude approximation. In particular, also, we are neglect-
ing diffraction by the probe inside the bombarded wedge.
When the approximation of the beam cross section as a §
function is not appropriate, one can convolute the excita-
tion probabilities derived in this paper with the appropri-
ate beam profile.

Cowley? finds features in the EELS spectrum which
seem to correlate with the length of the crystal in the
beam direction. Since the crystal is assumed to be infinite
in the beam direction in the present treatment, we cannot
look into those features, which have been discussed in
Ref. 18.

We have analyzed the electron-wedge interaction in the
electrostatic limit. The electron beam energy (~ 100 keV)
is large enough that one may worry about the effect of re-
tardation on the theoretical predictions. This is currently
being investigated.!®

Finally, let us mention that the expressions derived for
the excitation probability in Egs. (13b) and (16b) can be
used to analyze experiments where a detailed knowledge
of the complex dielectric function is not available, and one
may resort to a free-electron-gas expression for €(w), for
instance.
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