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Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution
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An analytical solution to the problem of finding the electrostatic edge eigenmodes of a hyperbolic dielec-
tric wedge is given and compared with the numerical solution given by Davis [Phys. Rev. B 14, 5523
(1976)]. The results presented here reproduce the solutions found when the hyperbolic dielectric wedge

tends to a sharp-edged dielectric wedge.

The study of edge modes on dielectric wedges was started
by Dobrzynski and Maradudin.! These authors modeled
sharp-edged wedges of varying apex angle. The wedges
were considered to be infinite in the transverse direction.
They concluded that the resulting eigenmodes can be classi-
fied as even or odd under reflection in the plane bisecting
the wedge, and that their frequencies are functions of one
continuously varying quantum number (the separation con-
stant in Laplace’s equation) and independent of the wave
number.

Later studies showed that the above dependence of the
eigenfrequencies can be removed by using a hyperbolic
cylinder? or a parabolic cylinder’—a treatment of the retard-
ed edge modes is given by Boardman, Aers, and
Teshima*—to model the dielectric wedge or, in a somewhat
different approach, by considering nonlocal effects in the
dielectric function and maintaining the sharp-edged model
for the dielectric wedge.’ In all these cases, the eigenfre-
quencies were obtained as a function of the wave number
and of a discrete quantum number.

However, the method proposed by Davis? is not com-
pletely satisfactory, because he solves numerically an equa-
tion which can be solved analytically in terms of Mathieu
and related functions. A detailed study of the latter ap-
proach allows us to show analytically that the electrostatic
potential and the dispersion relation obtained by Dobrzynski
and Maradudin! can be obtained when the hyperbolic wedge
goes to a sharp wedge.

Interest in the theoretical analysis of wedge excitations
has recently been renewed due to the improved electron
scattering experiments performed by Marks, Cowley, and
Wheatley, Howie, and McMullan,® who exploited the tech-
nique of scanning transmission electron microscopy (STEM)
as a tool of material analysis. They measured® the spectra
of energy losses of well-focused electron beams interacting
with small cubic crystallites of nanometer dimensions of
various oxides; the problem is to relate the experimental
data with the edge modes that the crystallites may sustain.
The beam probe can be kept either external or internal to
the sample, and in the former case the long-range interac-
tion between the electron beam and the solid is little distort-
ed by bulk effects. Some theoretical analyses are available
of the interaction of electron beams with flat® or parabolical-
ly shaped wedges,” but other geometries have yet to be in-
vestigated. ‘ :

The geometry proposed by Davis? to solve the problem of
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finding the electrostatic edge modes on a'hyperbolic wedge
is depicted in Fig. 1 and is conveniently described in elliptic
cylinder coordinates (¢, 7,z) such that®

x=~hcoshécosn, 0=¢(< oo, 0927w ,
y = h sinh¢ sinm. , 1)

zZ=2Zz

T]< -

FIG. 1. Hyperbolic dielectric wedge (dashed region) represented
in elliptic cylinder coordinates. The dielectric function of the dielec-
tric wedge is €. d = hcosa. For more details see the text.
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The point ( + 4,0) represents the common foci of the fami-
ly of confocal ellipses and of confocal hyperbolas.

The dielectric wedge occupies the region ¢=0,
—a<n<a, and —oo <z < oo (zis perpendicular to the
xy plane). The vacuum occupies the region &¢=0,
a<n<2m—a, and —o < z < oco. The upper half of the
boundary is given by m=«a, and the lower half is given by

= —a when approached from the dielectric, and by
m =27 —a when approached from the vacuum. The dis-
tance to any point (x,y) from the origin, expressed in ellip-
tic cylindrical coordinates, is

r=(x2+y)Y2= plcosh(2¢) +cos(2m) V%2 . . (2)

The electrostatic edge modes of the system are obtained
by solving Laplace’s equation for the potential ¢ (£, n,z;¢):

V2 (&,m,2;6)=0 . 3

Because of translational invariance along the z axis we can
write

d(&,m,z;t) = (€,m) expli(hkz—wt)] , @

where k and « are the wave number and the frequency,
respectively, of the electrostatic modes. Then, Eq. (3), in
elliptic cylindrical coordinates, becomes

3¢(¢,m) | 8%(£,m)
9&? an?

— k2h2(sinh2¢ +sin?n) ¢ (&,m) =0 .
©)

The boundary conditions are the continuity of the electro-
static potential and of the normal component of the dis-
placement across the boundary between the vacuum and the
dielectric. If the potential due to the edge modes is to be
physical, it must vanish when € — oo.

The factorization

o (£,m)=r(E)g(n) , 6)

allows separation of the variables in Laplace’s equation, and
Eq. (5) gives

gf&é_nl““ »—2q cos(2m)1g(n) =0 Q)

id;%f’ [— E,—2qcosh(2¢)1£(£) =0 , ®)
where

_ KR ,

=" O]

E, is the discrete separation constant, which can be obtained
as a perturbative solution to the eigenvalues of the harmon-
ic oscillator by considering the series development of sinh2¢
for small ¢ (close to the edge). Thus, by applying perturba-

tion theory,”1° we obtain
E, = k2h +khQ2n+1)+3Q@n2+2n+1)
11 2
+ 5 180 (207 +30n%2+40n+15)+ O((kh)~?)

n=0,1,2, ..., (10)

up to first order in perturbation theory. The choice of the
sign in the separation constant E, ensures that the solutions
to Eq. (5) are localized at the wedge.

Let us examine the behavior of the differential equations
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(7) and (8) in the limit #— 0. In this case the hyperbola
that defines the wedge tends to the sharp wedge with semi-
apex angle «. It is easy to prove that, in this case, n tends
to the polar angular coordinate 8, and £ is related to the po-
lar radial coordinate r through  expression (2). When
h— 0, Eq. (7) [Eq. (8)] becomes exactly the differential
equation for the angular (radial) component of the electro-
static potential in the case of a sharp-edged dielectric wedge,
i.e., Eq. (6) [Eq. (5)] in the paper of Dobrzynski and Mara-
dudin.!

Although solutions to Eqgs. (7) and (8) are, respectively,
Mathieu and modified Mathieu functions, we will express
our solutions to these equations in a manner which repro-
duces, naturally, the solutions found by Dobrzynski and
Maradudin’ for the sharp-edged dielectric wedge.

Solutions to Eq. (7) are Mathieu functions with imaginary
order (a linear combination of two independent solutions):

g(n)=Acein(n,q9) + Bsein(n,q) an
with
cein(n,q) =cosh(v,m)+ 3 q'c,(n) , (12)
r=1
sein(m.q) =sinh(v,m) + 3, ¢'s,(n) . (13)
r=1
A and B are constants, and — E,= —v2+ Sr=1a,q", fol-

lowing the notation given by McLachlan.!! The coefficients
¢,(n) and s,(n) are given in McLachlan’s book,!! with only
the exchange of the imaginary index for a real one.

These solutions have well-defined properties of symmetry
about the midplane of the dielectric (vacuum), defined by
n=0 (n=m). Equation (12) is associated with an even
solution, and Eq. (13) corresponds to an odd solution, as in
Dobrzynski and Maradudin’s paper.! The series (12) and
(13) converge if g is small, and diverge if g is large enough
(note that close to the wedge g is always small).

Solutions to Eq. (8) can be obtained in a similar fashion.
However, we are interested in an expression which contains
the K Bessel functions as a limit for small values of . We
proceed as follows. With the change

u =2/—q coshé = kh cosh¢ 14)
Eq. (8) gives

ZZ{+qu—(u —E, +2q)——4qu . 1s)
Equation (15) can be recognized as a modified Bessel
equation with an inhomogeneous term.!2 In this case, we
obtain the inhomogeneous solution f™" if two linearly in-
dependent solutions of the homogeneous equation are
known:!3

- u 2 £in
finh(y) = Km(u)f dtI,.,(t)[ﬁ;‘ll’%]

~I,a(u)f de,,,,(t)l tﬁ;&‘;(ﬁ +const
@16)
where
a=(E,+ k*h¥2)V? | an

From the asymptotic behavior of the 7 and K Bessel func-
tions for large arguments!? we select the K, function as the
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physical solution to the homogeneous part of Eq. (15), be-
cause [, grows exponentially for zones away from the edge
of the hyperbolic dielectric wedge. Then, we can write the
solution to the original differential equation (8) as

Sf(u)=constx K;o(u) + finh(y) . (18)
J
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To determine f™(u), we must use Eq. (16), i.e., an in-
tegrodifferential equation. In order to study the behavior. of
the solution given in Eq. (16), we use a perturbative ap-
proach. The first-order approximation is obtained by substi-
tuting for fi"! in the right-hand side of Eq. (16) the solu-
tion of the homogeneous equation, K;,(#). This leads to

£im () = ala() J7 dt Koo UK a2 () 4 2K (D) + Kia2(D)]

~aKa) [, dt 1D Ko (0 4 2K + Kiaia (D]

where we have chosen the constant in Eq. (16) to avoid
divergence problems as # — oo. This first-order approxima-
tion appears as a product of g times a nondivergent function
of u, which implies that when A — 0, then, from expression
(9), ¢ — 0 and f{™® — 0. Therefore, the solution to. Eq. (8)
in the limit A — 0 is, according to Eq. (18),

f(r)=constx K, (kr) , (20)

where v is the continuous separation constant in Laplace’s
equation, as for the case h— 0 (Ref. 1).

Now we return to the finite-# case. The even electrostatic
potential has the form

Af(€)cein(n,g) explilkz —wt)]
. o —a<n<a , (21)
$i(&,m.z;0) Bf(&)cep(mr—m,q) expli(kz —wt)]
a<n<22r—a (22)
The odd electrostatic potential has the form
Cfr(&)sepn(n,q) explilkz—wt)] ,
. N —a<n<a , (23)
$a(&,m,z,0) = Df(&)sen(m—m,q) expli(kz—wt)] ,
a<n<2m—a , (24)

with f(€), cen(n,q), and se,(n,q) given in expressions
(18), (19), (12), and (13), respectively. By applying the
boundary conditions we obtain the dispersion relation for
the even and odd modes

cein(a,q)cein(m—a,q)

25
cein(a,q)cep(m—a,q) (25)

€= — (even modes) ,

_ sein(a,g)sein(m—a,q)

7 (odd modes) ,
sei(a,q)sep(m—a,q)

(26)

€=
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where € is the dielectric function of the medium and the
prime denotes derivation with respect to n. In the limit

.h— 0, when the hyperbolic dielectric wedge tends to a

sharp wedge, the dispersion relations (25) and (26) tend to
the dispersion relations for the sharp wedge.!

The dispersion relation obtained by substituting the
values of the cej, and se;, functions (and the derivatives)
calculated using Egs. (10) to (13) with a few terms in the
expansions, give a result in accordance with Davis’s? disper-
sion relation for values of kh near unity. However, for kh
away from this value, we need to use more terms in the
series expansions in Eq. (10).

Therefore, the method proposed here to solve the electro-
static edge modes of the hyperbolic dielectric wedge gives
analytical solutions, which reproduce correctly the analytical
expressions obtained for the dielectric sharp wedge,!

The results obtained by this method can be used to study
the interaction of an electron beam with a hyperbolic dielec-
tric wedge, similarly to the analysis of Garcia-Molina, Gras-
Marti, and Ritchie’ of the interaction of an electron beam
with a parabolic wedge. These studies are of great interest
in scanning transmission electron microscopy experi-
ments.% 1
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