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Elastic properties of an inhomogeneously diluted isotropic medium

Rafael Garcia-Molina
Departamento de Fisica, Facultad de Ciencias, Universidad de Murcia, E-30071 Murcia, Spain

Enrique Louis
Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain
and Industria Espafiola del Aluminio, Apartado 25, E-03080 Alicante, Spain

Oscar Pla and Francisco Guinea
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas,
Facultad de Ciencias, C-X1I, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
(Received 13 February 1991; revised manuscript received 14 May 1991)

We have investigated the elastic properties of an inhomogeneously diluted isotropic medium described
by means of a triangular network whose nearest-neighbor nodes interact through a central-force Hamil-
tonian, and its constitutents are removed with a probability that decreases with their distance to a given
point. This model interpolates between the case of homogeneously distributed voids (percolation) and
that of voids concentrated at the central zone of the system. The percolation transition in the inhomo-
geneous case is analyzed, and the results are interpreted on simple grounds.

The mechanical properties of disordered media is a
subject of great current interest.! In particular, the
effects of dilution have been intensively investigated on
homogeneously diluted systems.?”’ In this paper we
shall investigate a situation in which matter is removed
randomly but not homogeneously from the system; in
particular, we shall assume that the constituents of the
system are removed with a probability that decreases
with their distance to a given point (radial inhomogenei-
ty). This may be the situation in some cases of corrosion
or wear, where the material suffers a damage which di-
minishes as a function of the distance to the zone where
damage was originated. On the other hand, the percola-
tion transition in this case might show interesting pecu-
liarities.

Note that in all the studies of interacting percolation
carried out up to now,? the assumed correlation between
neighbors do also lead to homogeneously diluted media
(in this case the media can be considered as being homo-
geneous at a scale larger than for the system with no
correlations), whereas in this paper we shall consider
correlations which are inherently inhomogeneous. Our
model interpolates between those corresponding to voids
concentrated at the central zone of the sample>%° and
those for the case of homogeneously distributed voids.
The numerical results are very satisfactorily fitted by
means of a continuum model that accounts for the inho-

mogeneity of the dilution. On the other hand, the system .

does undergo a percolation transition which takes place
at a fraction of removed matter (1—p) which increases as
the degree of inhomogeneity increases; the critical ex-
ponents seem also to be different from those of the homo-
geneous case. A more detailed analysis of the results re-
veals that this dependence of the critical properties on
the inhomogeneity might only be apparent; in fact, if p is
referred to the region of the sample that might be con-
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sidered as being radially homogeneous, the critical pa-
rameters are very similar to those obtained in the homo-
geneous case.’

The system whose properties we shall be discussing
consists of a triangular network made of identical Hooke-
an springs; the corresponding Hamiltonian is

H=%(2) kjl(w;—u;)%; 7%, (1)
ij

where the sum runs over all nearest-neighbor nodes of the
triangular network, u; is the displacement vector at site i
and T;; is the unit vector between sites i and j. The force
constants k,-j will be taken either equal to 1 or 0, accord-
ing to the procedure outlined below. This system has
been previously used to investigate elasticity percolation,
and its critical properties are relatively well known,? al-
though controversial results’ have been published recent-
ly. Numerical simulations were carried out on hexagons
of side L (all length magnitudes will be hereafter ex-
pressed in units of bond length).

In this study we remove bonds with probabilities that
decrease with their distances to the center of the hexago-
nal samples. In order to eliminate a fraction (1—p) of
bonds, we remove a particular one in the following way.
Each bond i is characterized by the middle point of the
hexagonal band where it lies, that is (h —1/2), where
h =1,L; then, a probability

P,(h)={expla(h —1/2—¢q)]+1} ! 2)

is assigned to it. This probability density resembles the
Fermi-Dirac probability distribution, where a and ¢ in
Eq. (2) play roles similar to those of the inverse of the ab-
solute temperature and the chemical potential, respec-
tively. In the case of fermions at finite temperatures, the
chemical potential is calculated to give the total number
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of particles. This procedure would pose important prac-
tical difficulties in the present case; thus, the probability
distribution of Eq. (2) has been used as follows. First we
order at random the set of bonds corresponding to each
hexagon. Then we take ¢ =1 and assign random num-
bers 7; to all bonds in the network; all bonds having
R; <P;(h), for i=1,n, (n, being the number of unbro-
ken bonds corresponding to the fraction p) are subse-
quently removed. If the fraction of broken bonds is less
than the actual value of (1—p), we proceed with the next
value of q. The process is repeated until the fraction of
removed bonds equals (1—p). The parameter a deter-
mines the shape of the distribution. In this context we
shall remark that the product aL must be kept constant
in order to have, for the different sample sizes, distribu-
tions of broken bonds that are invariant upon scale trans-
formations. Two limiting cases are described by the
present model: when aL =0 the distribution corresponds
to the case of homogeneous (but random) bond elimina-
tion and when aL — o voids are concentrated at the
center of the sample (in this case a hexagonal ring re-
sults).

To develop a continuum model suitable to handle a
medium such as the one considered here, we first need to
write the equilibrium equations for the case in which A
and p are not constants but radial functions, A(r) and
u(r). The density of elastic energy for an isotropic medi-
um in 2D is given by

A
=?(axux+8yuy)2

+p[(3,u, )+ 1,1, +3,u, P+ (,u,)?], (3

where 9, ,, stand for the partial derivatives with respect
to x or y, respectively, and u=(ux,uy) is the displace-
ment field. Under isotropic dilation (the case considered
here) we can write u, =xF(r) and u, =yF(r). Then, the
equilibrium equation is

(A+2u)3F' +rF")+2(MN +pu'F +rF')—A'rF'=0,

(4)

where the prime stands for the radial derivative.

In the homogeneously diluted case, the results obtained
with the Hamiltonian given by Eq. (1) can be very accu-
rately fitted by®

A B3y forp>2/3. (5)
Ao mo
This approximation is valid up to a value of p very close
to the percolation threshold, p.. We now proceed by us-
ing a local approximation in which Eq. (5) is assumed to
hold for each value of 7,

A=Alp(n], p=ulp(n], (6)

where [1—p(r)] is the fraction of voids at ». This as-
sumption gives very satisfactory results away from the
percolation threshold (see below) and is in line with the
local interpretation of the percolation transition dis-
cussed at the end of this paper.

To speed up the calculations, instead of using the func-
tion p (r), i.e., the local fraction of remaining matter, we
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fit them by means of the following analytical expression

expla(r —f)]
1—explalr —B)] ’
where a and S are functions of aL (i.e., the degree of in-
homogeneity) and the total fraction of remaining bonds,
p

p(r)= (7)

As regards the boundary conditions, several points are
worth to comment. We fix the displacements, C, at the
outer boundary, u,(r,,;)=C. On the other hand, below a
given total fraction of remaining bonds, we can define an
inner radius r;,, for which p (r) =0.66 when r <r, ; as the
percolation threshold has already been reached in this re-
gion, then, concerning its elastic properties, the inner re-
gion can be treated as a circular hole and, thus,
p(r)=A(r)=0 for r <r;,. The second boundary condi-
tion is then obtained by imposing that no transversal
forces are transmitted through » =r, , that is, at the inner
border the radial component of the stress tensor verifies
that o,,(r;,)=0; this leads to

F(r) -3,
F'(r) |r=r, arms

n

(8)

Then considering the inner and outer boundary condi-
tions above and introducing Egs. (5)—(7) into the
differential equation, Eq. (4), the solution to the function
F (r), which gives account of the radial inhomogeneity, is
found by standard numerical techniques. The bulk
modulus is then directly obtained from the total elastic
energy.

In order to calculate the bulk modulus of the diluted
medium we applied a uniform dilation at the boundary of
the hexagonal samples. Then the interior nodes were al-
lowed to relax until the equilibrium equations were
satisfied; the iteration process was stopped when the max-
imum force on the interior nodes was less than 0.001
times the initial force on the boundary nodes (between
2000 and 8000 iterations were required). Simulations
were carried out on hexagons of sides L =10, 15, 30, and
45, containing nodes in the range 331-6211. In order to
smooth out statistical fluctuations, the calculations were
performed for a number of realizations which varied with
the size of the hexagon (around 30 for the smaller size
and 15 for the larger one). The critical properties of the
percolation transition were investigated by means of the
generalized phenomenological renormalization method:!°
From four hexagonal samples such that their sizes L,,
L,, Ly, and L, were related by L, /L,=L,/L,, the per-
colation threshold p, and the ratio 8= f /v, (where f is
the elasticity percolation exponent and v, is the correla-
tion length exponent), can be obtained.

Figure 1 shows the normalized bulk modulus
[B=B(p)/B,, where B,=B (p =1)] of the diluted medi-
um as a function of unbroken bonds, p, for three values of
aL. Despite that these results correspond to a finite sam-
ple (L =45) and that extrapolation to infinite systems is
not straightforward, it seems apparent that the bulk
modulus vanishes, and at values of p which are clearly
smaller than the one corresponding to the homogeneous
case, i.e., p=~0.65>*%7 for which the results are also
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shown in Fig. 1. On the other hand, the bulk moduli,
near percolation, are bounded by that corresponding to
the homogeneous case (lower bound) and that for a hex-
agonal ring (upper bound). In the latter case the bulk
modulus is given by>

B(p)=p/(3—2p), %)

and the results are also shown in Fig. 1. Thus, the mac-
roscopic behavior of the present inhomogeneous model
interpolates between that of the homogeneous case and
that of hexagonal rings, describing the properties of sys-
tems having a nonuniform distribution of voids. We also
note that for values of p near unity, the bulk moduli for
the inhomogeneous case are smaller than that for the
homogeneous case. This is a consequence of the consid-
erable amount of disconnected bonds in the inner region
of the samples, which do not contribute to the elastic en-
ergy. This effect increases with the degree of inhomo-
geneity (see Fig. 1).

The results obtained by means of the continuum model
described previously compared to those given by simula-
tions appear in the inset of Fig. 1. The remarkable agree-
ment supports the local approximation used to obtain the
Lameé coefficients of the inhomogeneous medium, Eq. (6).

As discussed above, the behavior of the bulk modulus
in the inhomogeneous case suggests that these systems do
also show a percolation transition. The question is
whether the critical properties are or not different from
those found in homogeneously diluted media. In Fig. 2
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FIG. 1. Normalized bulk modulus as a function of p for a
hexagon of side L =45, where the bonds have been removed fol-
lowing the probability distribution shown in Eq. (2) for two
different cases: aL =2 and aL =4. Results for the homogene-
ous case (aL =0) and hexagonal rings [Eq. (3)] are also shown.
The inset shows the normalized bulk modulus as a function of p,
obtained by means of the continuum model described in the text
and by simulation, the latter for the case aL =4.
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we present the results of the phenomenological renormal-
ization procedure outlined above, for aL =4. It is noted
a clear intersection between the curves corresponding to
the two sets of sizes used here (10/30 and 45/15). This
intersection gives values for p. and §, 0.27+0.05 and
0.85%0.10, respectively, which are markedly different
from those most widely quoted for the homogeneous
case, i.e., 0.65 and 1.35, respectively.3 These results indi-
cate that the radial inhomogeneity considered in this
work does in fact affect the critical properties of the per-
colation transition.

The analysis of the percolation transition discussed
above is rather unclear, as it is very unlikely that an in-
herently inhomogeneous medium could be characterized
by a single correlation length, as in the perfectly homo-
geneous case. To overcome this difficulty we define two
regions in the inhomogeneously diluted system, an inner
region with an average p below the standard percolation
threshold, and a surface region which we assume to be ra-
dially homogeneous and where standard percolation
theory holds. Note that it is rather difficult to find the
exact placement of the boundary between those two re-
gions, which should strongly depend upon the degree of
inhomogeneity (aL). Nonetheless, to go further into this
argument, we take the largest value of aL here considered
and define the surface region as the outer hexagonal
band, which is clearly homogeneous. Then, we define p;
as the fraction of unbroken bonds in the surface band,
and plot the results of Fig. 1 as a function of p,; this is
done in Fig. 3. The bulk modulus renormalized in this
way does behave very similarly to that for the homogene-
ous case. An estimate of the critical parameters through
a procedure similar to that used above (although the er-
rors involved in this estimation are much higher than in
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FIG. 2. Finite-size scaling estimation of the critical parame-
ters p, and f /v, corresponding to the case aL =4.
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FIG. 3. Normalized bulk modulus as a function of p. The

bulk modulus corresponding to the inhomogeneous case
(aL =4) has been plotted as a function of the total fraction of
bonds and as a function of the fraction of surface bonds, p; (see
text). The bulk modulus corresponding to the homogeneous
case (aL =0) is also depicted (dashed line). The side of the hex-
agon is L =45.

the previous case) gave 0.69 for the percolation threshold
and 1.1 for 8§, which are much closer to those of the most
quoted elasticity percolation results.® The agreement is
rather remarkable and somewhat unexpected, consider-
ing the rather small width of the surface band. We find
that a local application of standard percolation theory
works rather well for our inhomogeneous distribution of
missing bonds. However, close to the percolation thresh-
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old, p., the correlation length diverges, and the system
should show strong nonlocal features which we do not
observe in our simulations. We believe that our findings
can be partially ascribed to the extreme narrowness of the
critical region in elastic percolation, which, in turn, is as-
sociated with large critical exponents, in particular, for
the correlation length. If this explanation holds, it means
that similar results should be found for other systems
with different correlations between missing bonds. We
also note that the validity of this local interpretation of
the percolation transition in the inhomogeneous medium
is further supported by the agreement between the con-
tinuum model and simulations mentioned above (inset in
Fig. 1).

The above results suggest that the macroscopic proper-
ties of inhomogeneous systems, as far as the percolation
transition is concerned, are controlled by the surface re-
gion. As remarked above, this region is rather elusive
and its precise definition is outside the scope of this pa-
per, as much more extensive numerical simulations might
be required. We would only like to add that as aL is de-
creased its width will increase and, eventually, becomes
of the order of the correlation length; at this point the
whole system would behave as being homogeneous.
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