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We calculate the resistance of one-, two-, and three-dimensional localized systems in the hopping
regime, simulated by random-resistor networks within the r-resistor model. The analysis of the
logarithm of the resistance as a function of the degree of spatial disorder reveals that in one- and
two-dimensional samples the resistance increases with disorder, while in three-dimensional samples
the resistance decreases. We also study the fluctuations of the conductance from sample to sample.

I. INTRODUCTION

At low temperatures, hopping is the conduction mech-
anism of disordered systems with localized states. In hop-
ping transport electrons conduct by thermally effected
tunneling from a filled site to a vacant site.! Miller and
Abrahams? calculated the transition rates between lo-
calized states and showed that the problem of hopping
conduction is equivalent to a random resistor network
with an effective resistance between each pair of local-
ized states.

An important feature of the effective resistances be-
tween sites, which will be given explicitly in the next
section, is their exponential dependence on the distance
between the sites involved and on their energies. Thus,
even for a moderate range of variation of these variables
the range of variation of the effective resistances is enor-
mous. This property is used to make a substantial simpli-
fication in the complexity of the network through the use
of percolation.® Within this approximation, the values of
the activation energies and the frequency and tempera-
ture dependences of the conductivity are obtained to a
relatively large degree of precision.

The distribution of site energies depends on the density
of states of the material considered. The two most im-
portant, and simplest, cases consist of a constant density
of states and a sharp peak in the density of states re-
moved from the Fermi level. We will concentrate on this
second case, which is called the r resistor, since the spa-
tial dependence of the resistances is the key ingredient
of the problem. The energy dependence just produced
an activated behavior of the conductivity with the acti-
vation energy equal to the difference between the Fermi
level and the peak in the density of states.

Our main goal is to study the changes in the resistance
with the degree of spatial disorder of the sites involved
in the conduction process. A second aim is to analyze
the magnitude of the conductance fluctuations of meso-
scopic samples, also in terms of the spatial disorder. Al-
though we work within the r-resistor model, instead of
using a percolation treatment,* we numerically calculate
the random resistor problem by solving Kirchhoff’s laws
directly, which allows us to achieve a better precision in
mesoscopic samples.
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We assume that the only relevant modification induced
by the disorder is a change in the site positions, with
no variation in the wave function extension. As the
wave functions are supposed to be strongly localized,
the model should be specially suitable for high levels of
disorder,® but not for the ordered cases, which should
present extended wave functions and for which hopping
will not be the conduction mechanism.®

In the next section we detail the model used. In
Sec. III, we show the results for the behavior of the loga-
rithm of the resistance as a function of disorder, for one-,
two-, and three-dimensional systems. Finally, the con-
clusions are discussed in Sec. IV.

II. MODEL AND NUMERICAL PROCEDURE

We assume a noninteracting and strongly localized sys-
tem, each of whose states can be associated with a given
site. In the Miller-Abrahams random resistor model,?
the effective resistance between sites ¢ and j is equal to!

2r;; €
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where R?J- is a typical resistance weakly dependent on the
temperature and on the other parameters of the problem,
a is the localization radius, r;; the distance between sites

i and 7, and ¢;; is given by

1
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where €; and ¢; are the energies of states ¢ and j, and
is the chemical potential.

We consider a density of states with a sharp peak away
from the Fermi level. In this case, the spatial and the
energy contributions to the resistance of the sample de-
couple, and the energy problem can be solved trivially;
the system presents an Arrhenius-type behavior with an
activation energy equal to the difference between the
Fermi energy and the energy of the peak in the density of
states.? The main problem is to find the total resistance
of a sample formed by a set of resistors with resistances
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depending exponentially on the distance between sites.

Let us consider a resistor network whose nodes are oc-
cupying the sites of a lattice, with unit lattice constant.
The one-, two-, and three-dimensional systems studied
are, respectively, a linear chain, a square lattice, and a
cubic lattice, before disorder is introduced. We charac-
terize each sample by the length L of each edge.

Disorder is introduced in the lattice by randomly dis-
placing each site to a new coordinate according to a
Gaussian distribution function, but without allowing it
to enter in the Wigner cell of a neighboring site. Once we
have displaced all the sites of a sample, we characterize
its degree of disorder by the parameter

1 &
$= T3 Z exp[i2m(z; — z;)], (3)

i,J

where d is the dimensionality of the system, and z; the
z coordinate of the i site. The parameter s varies from
s = 1, for the perfect lattice, to s = 0, for the case of
complete disorder.

We choose the resistance between two nearest neigh-
bors in the ordered case as our unit of resistance. This
choice will be relevant when considering the fluctuations
of the logarithm of the resistance. The natural scale for
resistances is the quantum of resistance h/e2,” but typical
values of the effective resistances in hopping conduction
are not far from this quantum, which induced us into our
choice of the unit of resistance.

According to the previous discussion, the effective re-
sistance between sites ¢ and j is given by

_ exp(2r;j/a)
Ry = exp(2/a) ’ (4)

where the distances are measured in units of the lattice
spacing. We consider resistances R;; connecting only first
and second neighbors ¢ and j.

In order to obtain the conductance of the network, we
first apply a voltage difference AV to the lattice by set-
ting the voltage equal to zero at each site on one end
surface of the lattice and assigning a constant voltage to
all the sites on the opposite end. Then, for each node 2
(except for those for which the voltage is imposed exter-
nally) we have to obtain the voltage V; by solving Kirch-
hoff’s current law®

Vi-V;
Y. —=—=0 (5)
= R

This equation is solved iteratively until a good conver-
gence for the values of the voltages V; at each site is
finally obtained. We use periodic boundary conditions in
the perpendicular directions to that of the applied volt-
age.

By applying Ohm’s law, we obtain the current I;
through each of the resistors connected to the sites i be-
longing to an end face of the lattice. The total resistance
R of the system is the applied voltage AV divided by the
sum of all these currents I;.
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III. CONDUCTANCE AS A FUNCTION
OF DISORDER

We divide the range of the order parameter s in 20
bins, and we average the logarithm of the resistance over
those realizations whose s falls in each bin. We know that
the logarithm of the resistance is a self-averaging mag-
nitude, as we will discuss later on. In the set of figures
1, the solid line represents (log,o R) and the dashed lines
correspond to (log,o R) plus or minus the statistical er-
ror, calculated as 4/((log;o R)?) — (log,q R)2)/N, where
N is the number of realizations in the bin considered.

In Fig. 1(a) we show the histogram corresponding to
the logarithm of the resistance as a function of the de-
gree of order s for a total of 2000 realizations of a one-
dimensional (1D) system with L = 300. We can note
the drastic increase of the resistance for high degrees of
spatial disorder (low values of s). The resistance for the
completely disordered case is about two orders of mag-
nitude greater than the resistance of the ordered lattice.
This drastic increase was to be expected since the disor-
der implies large gaps between sites, and so the presence
of large resistances in the chain, which dominate the total
resistance of the sample.

In Fig. 1(b) we present the histogram of the logarithm
of the resistance as a function of the degree of order s for
600 realizations of a two-dimensional (2D) system with
L = 20. The total resistance also increases with disorder,
but in a much smoother way than in the one-dimensional
system. The smaller increase is due to the fact that the
large resistances can be partially avoided by an alterna-
tive route through smaller resistances.

Figure 1(c) represents the histogram of the logarithm
of the resistance of 300 three-dimensional (3D) samples
with L = 6. We can conclude from this figure that the
resistance decreases with disorder. In all dimensional-
ities, the low density and high density regions created
by the spatial disorder correspond to regions with large
and with small resistances, respectively. But, in three-
dimensional systems, the current can always find a path
through the small resistance regions.

The results shown in Fig. 1 are very similar to those
obtained for other sample sizes (L = 100 and 200 in 1D,
for L = 15 in 2D, and for L = 7 in 3D). This indicates
that we are considering samples with a size adequate for
the kind of process that we are studying. The only major
difference with size is for the resistance fluctuations in
one-dimensional systems, as we will see later on.

In Fig. 2, we plot the average value of the resistance
(dashed line), the inverse of the average value of the con-
ductance (short dashed line), and the exponential of the
average value of the logarithm of the resistance (solid
line) as a function of s. In the absence of dispersion in
the data, these three curves should coincide, but it is
clear from the results that they do not superpose, due to
the importance of the fluctuations. The resistance and
the conductance are not self-averaging quantities, unlike
the logarithm of the resistance.® This last quantity is the
one that has to be considered whenever the fluctuations
are important.

Let us now consider in more detail the magnitude of
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the fluctuations. First of all, we have to mention that
the fluctuations are very similar for all the sizes stud-
ied and only depend on the dimensionality and on the
degree of disorder. Thus, even for very large systems,
the fluctuations in the conductance are comparable with
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FIG. 1. Average of the logarithm of the resistance (solid
line) as a function of the order parameter s; the dashed lines
show the boundaries of the statistical error, evaluated as in-
dicated in the main text. (a) 1D sample with L = 300, (b)
2D sample with L = 20, (c) 3D sample with L = 6.
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FIG. 2. Average resistance (dashed line) exp[(log;, R)]
(solid line) and inverse of the average conductance (short
dashed line) for a one-dimensional system with L = 300. A
magnification of this picture for values of s > 0.5 is shown in
the inset.

the average values of the conductance. The same is true
for the resistance. The magnitude that goes to zero as
the system size increases is the relative fluctuation of the
logarithm of the resistance, §(log,q R)/(log,o R).

The only self-averaging magnitude is log,o R, and
is what one should study experimentally. Even for
the smaller samples considered, §(log,q R)/(log,o R) is
clearly smaller than §R/(R) and than §G/(G), where G
stands for conductance. They would only be compara-
ble if the individual pair resistances were sensibly smaller
than the typical resistance h/e?. In one-dimensional sys-
tems with small disorder in the coherent regime and at
zero temperature, it is known!? that In(R) = 2(InR).
Our problem corresponds to the noncoherent case, since
it is thermally activated hopping, and we expect the fluc-
tuations to be less important. We cannot compare our
results with the predictions of the coherent case directly,
unless we specify the activation energy (E,) and the tem-
perature (T'), since we have to know the resistance in
units of e2/h to compare (In R), (InG), and In(R). We
estimate that the exponent in the energy factor e~ F+/*T
has to be approximately equal to —7 for our fluctuations
to be of the same order of magnitude as in the coherent
case.

IV. DISCUSSION AND CONCLUSIONS

The main conclusion of our work is that the resistances
of one-dimensional and two-dimensional samples increase
with the spatial disorder, while the resistance of three-
dimensional samples decreases. The spatial disorder al-
ways produces regions with large resistances and regions
with small resistances, and the behavior of the conduc-
tance depends on whether the current can find a conduc-
tion path through the region of small resistances. The an-
swer is positive in three-dimensional systems, marginally
negative in two-dimensional systems, and clearly nega-
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tive in one-dimensional systems.

In disordered systems with a fairly constant density of
states around the Fermi level, the site energy is a new
random variable and the effective dimensionality of the
system is four. So we expect in these cases that the con-
ductivity drastically increases with the spatial disorder.

Our results show the importance of the reproducible,
but not universal, conductance fluctuations in the local-
ized regime. Nevertheless, it is not possible a quantitative
study of these fluctuations, due to the algorithm used,
primarily designed to analyze the change of the conduc-
tance with the degree of disorder. To achieve this with
high enough precision, we have to consider the same num-
ber of resistances between pairs, which fixes the topology
of the sample in detriment of the large scale fluctuations
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in the density of sites and so in the distribution of resis-
tances, mainly in the one-dimensional case.

Apart from its intrinsic theoretical interest, the re-
sults may be applicable to ion bombardment experi-
ments, where important conductivity changes have been
observed as a result of a possible disorder induced by the
bombardment.!?
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