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Influence of the description of the target
energy-loss function on the energy loss of swift
projectiles
Cristian D. Denton,a∗ Isabel Abril,a Rafael Garcia-Molina,b Juan
C. Moreno-Marínc and Santiago Heredia-Avalosc

The optical energy-loss function (ELF) of Au and Al, obtained from experiments, is extended to finite wavenumber k using three
different widely used models, namely, with the Mermin type ELFs with generalized oscillator strengths (MELF-GOS) model, the
extended Drude model and the Penn model. The resulting ELFs show important differences but the MELF-GOS model gives
more realistic results when compared with the available experimental ELFs for finite k. These differences affect calculations of
important parameters in projectile-solid interaction. The calculated stopping power and energy-loss straggling of Au and Al for
H projectiles as well as the corresponding inelastic mean free path (IMFP) of electrons in Au and Al clearly show that the results
depend on the model used for the ELF description. Comparison with experimental data gives support to the MELF-GOS model,
especially in a material with a complex energy-loss spectrum such as Au. Copyright c© 2008 John Wiley & Sons, Ltd.
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Introduction

The interaction of charged projectiles with matter is affected
by the inelastic excitations of the target electrons by the swift
incident particle. In fact, these processes are the main source of
slowing down for swift charged particles. A lot of applications
and techniques need to know the energy loss of the projectile for
quantitative purposes. Among them, it is worth mentioning the
bombardment of tumors with ions for therapeutical purposes,[1]

ion beam analysis techniques, like PIXE, RBS or ERDA,[2] or
implantation of ions for doping of semiconductors, where the
stopping power of the material is the key parameter. Other
surface-spectroscopic techniques, such as Auger or photoelectron
spectroscopies, use the mean free path for electronic inelastic
excitations to obtain quantitative results from spectra.[3]

Knowing the energy-loss function (ELF) of a material and
using the dielectric formalism,[4] it is possible to calculate the
main momenta of the projectile energy-loss distribution. The
ELF represents the probability that an excitation event with
momentum transfer �k and energy transfer �ω takes place in
the target. Several experimental techniques[5] provide the ELF of
a material at k = 0, which is called the optical limit. Nevertheless
data for the ELF at k �= 0 are scarce and there are several models
to extend the optical ELF to finite k values,[6−10] but they yield
somewhat different results, and hence, the inelastic energy loss
calculated from the different approaches of the ELF could be
different in principle.

Here we model the ELF of Au and Al using the Mermin type ELFs
with generalized oscillator strengths (MELF-GOS) model,[9,11,12] the
extended Drude model proposed by Ritchie and Howie[6,8] and
the Penn model,[7,8] comparing the dependence of the ELF with
k in the three models. We have chosen Au and Al because they
represent extreme behavior for the optical ELF. The response of
Al is similar to a free electron gas with a sharp single peak in the

ELF, while Au has a complex and wide excitation spectrum. We
also use these models to calculate the stopping power and the
energy-loss straggling for protons, as well as the inelastic mean
free path (IMFP) of electrons in Au and Al, in order to compare
these quantities with available experimental data.

This article is structured as follows. In Section on Model we show
how to describe the energy loss of projectiles within the dielectric
formalism and we introduce three models to extend the optical
ELF to k �= 0. In Section on Results we obtain the ELF at finite k
using the three models and study the influence on the stopping
power and energy-loss straggling for protons in Au and Al, as well
as the IMFP of electrons in Au and Al. The main conclusions are
drawn at the end of this article.

Model

Energy loss of a projectile

When a projectile of charge q and velocity v penetrates a
medium characterized by the dielectric functionε(k, ω), it produces
electronic excitations in the medium, losing energy in the process.
Here we deal with swift incident particles, so that the energy loss
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due to elastic scattering with the target nuclei can be neglected.
The target ELF, Im

[−1/ε (k, ω)
]
, represents the probability that

the projectile produces an electronic excitation with momentum
transfer �k and energy transfer �ω.

Within the linear dielectric formalism,[4] the resulting energy-
loss distribution of the projectiles per unit path length is
characterized by the moments given by

〈�En〉
�x

= 2

�πv2

∫ ωmax

0
dω(�ω)n

∫ k2(ω)

k1(ω)

dk

k
F(k)2Im

[ −1

ε(k, ω)

]
,

(1)

where F(k) is the Fourier transform of the projectile charge density.
The limits of the integrals are related to energy conservation in the
target-electron excitation process

k1,2(ω) = mv

�
∓

√
mv

�
− 2ω and ωmax = mv2

2�
, (2)

with m being the electron mass.
When the mass of the projectile is large compared to the

mass of the electron (for instance, for proton beams), the above
limits can be written as k1 = ω/v , k2 → ∞ and ωmax → ∞.
The moment in Eqn (1) with n = 0 corresponds to the inverse
of the IMFP, which is the mean distance between consecutive
inelastic electronic excitations. The stopping power Sp of the
target is the first moment of the distribution, i.e. the mean energy
lost by the projectile per unit path length. The second moment
of the distribution is called the energy-loss straggling �2 and
represents the variance of the energy loss per unit path length.
As can be observed from Eqn (1), a correct description of the ELF
is necessary for a complete characterization of the energy-loss
process, at least in the range of projectile velocities and charges
where the linear dielectric theory is valid. Nowadays, there are a
good number of materials whose optical ELF (at k = 0) is available
from experiments.[5] Unfortunately, experimental data of the ELF
at k �= 0 is scarce.[13−17] Therefore, the dependence of the ELF
with k has to be modelled in a proper manner. In the rest of
this section, we describe three widely used models to account
for the behavior of the ELF at finite k, and afterwards, we show
how to apply the dielectric formalism for the calculation of the
stopping power and the energy-loss straggling of a material being
bombarded by protons; the inverse mean free path of electrons
will also be calculated.

ELF description

MELF-GOS model

The MELF-GOS model uses different approaches for the contri-
butions to the ELF of the target electronic excitations coming
from outer- or inner-shell electrons. The former is obtained by
fitting the experimental ELF in the optical limit (k = 0) by a linear
combination of Mermin-type ELF,[9,11,12]

Im

[ −1

ε(k = 0, ω)

]
outer

=
∑

i

AiIm

[ −1

εM(ωi , γi; k = 0, ω)

]
ω≥ωth,i

,

(3)

with εM being a Mermin-type dielectric function.[18] The fitting
parameters ωi, γi and Ai are related, respectively, to the position,

width and relative weight of the peaks observed in the ELF
spectrum; ωth,i is a threshold energy. A Mermin ELF represents
an improvement over the Lindhard ELF since it incorporates the
broadening due to the lifetime of the excitations. The ELF fitted
at k = 0 is analytically extended to all values of k through the
properties of the Mermin dielectric function,[19] so no dispersion
schemes are necessary to incorporate the k dependence of the
ELF.

The description of the contribution to the ELF coming from
the inner-shell electrons is done in terms of the GOS for isolated
atoms; this approach is suitable since inner-shell electrons have
large binding energies and show negligible collective effects. The

relation between the ELF and the GOS dfn�

dω
of the n� sub-shell is

given by[20]

Im

[ −1

ε(k, ω)

]
inner

= 2π2N
ω

∑
n�

dfn�(k, ω)

dω
,

(4)

where N is the atomic density of the target. The total ELF will be
the sum of the contributions coming from the outer- and inner-
shell electrons. The parameters of the ELF fitting in Eqn (3) are
chosen in such a way that the ELF reproduces the main trends of
the experimental optical ELF and satisfies the f -sum rule for every
k,

Z2 = 1

2π2N

∫ ∞

0
dω ωIm

[ −1

ε(k, ω)

]
, (5)

where Z2 is the atomic number of the target. This fact imposes
another restriction on the obtained ELF, because the contribution
to the f -sum rule from the inner shells depends on k.[21] We have
also checked that these fittings to the optical ELF satisfy the perfect
screening sum rule within 7% for Au and 2% for Al. The MELF-GOS
model has shown its accuracy and reliability in describing the k
dependence of the ELF for Al, graphite and liquid water[19,22] as well
as in calculating the stopping power and energy-loss straggling for
several targets, both elemental or compounds, for light projectiles
over a broad range of incident energies.[11,23−27] In Ref. [28], De la
Cruz and Yubero used a variant of this model to study the IMFP
of electrons in solids. The main difference between the MELF-GOS
model presented here and that used by De la Cruz and Yubero is
in the treatment of the inner-shells. Previously,[9] the fitting of the
contribution to the ELF coming from the inner-shells was done
with truncated Mermin ELFs, choosing a quadratic dispersion in
the threshold in order to satisfy the f -sum rule; now we use GOS,
which are much more ad hoc to describe the response of an
inner-shells.

Extended Drude model

Ritchie and Howie[6] proposed an extension to k �= 0 of the Drude
model in which the fitting of the optical ELF corresponding to the
outer-shell electrons is obtained through Drude-type ELFs

Im

[ −1

ε(k = 0, ω)

]
outer

=
∑

i

BiIm

[ −1

εD(ωi , γi; k = 0, ω)

]
ω≥ωth,i

,

(6)

and each Drude-type ELF takes the form
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Im

[ −1

εD(ωi , γi; k, ω)

]
= ω2

i γiω{[
ωi(k)

]2 − ω2
}2 + (γiω)2

, (7)

for finite k; ωi(k) is a dispersion term for the plasmon frequency ωi

which was chosen to be ωi(k) = ωi + �k2/2m in order to approach
the Bethe ridge as k → ∞.[6] It is worth mentioning that both the
Mermin ELF and the Drude ELF converge in the optical limit, so
that the fitting at k = 0 by both models yields the same result.
The coefficients Ai and Bi representing the relative weight of the
Mermin and Drude ELFs, respectively, are related by Bi = Aiω

2
i .

Penn model

Penn proposed a simpler scheme[7] where the sum over a finite
number of Drude-type ELFs is replaced by an integration over
Lindhard dielectric functions of zero width. This integration yields
the following evolution for finite k[8]

Im

[ −1

ε(k, ω)

]
outer

= ω′(k)

ω
Im

[ −1

ε(k = 0, ω′(k))

]
outer

, (8)

where ω′(k) = ω − �k2/2m. If ω′ < 0, then Im
[−1/ε(k, ω)

]
is set

to zero. In this way, the optical ELF is easily extended to k �= 0.
For comparison with the two previous models, we use the same
fitting parameters for the optical ELF resulting from the outer-shell
electrons.

Both, the extended Drude and the Penn models describe the ELF
corresponding only to outer-shell electrons, and the contribution
to the ELF coming from the inner-shell electrons is described in
terms of GOS functions for these two models in the same way as
is done in the MELF-GOS model. Therefore, when comparing the
ELF at finite k in the three models, only the differences in the ELF
corresponding to outer-shell electrons will emerge.

Energy loss of H projectiles

When a proton penetrates a material it captures and loses target
electrons dynamically modifying its charge state. As soon as charge
equilibrium is reached, the stopping power Sp of the material can
be written as a weighted average of the stopping power for
protons, Sp,1, and hydrogen, Sp,0:

Sp = φ0Sp,0 + φ1Sp,1, (9)

where φq is the charge fraction of the charge state q, which is
obtained using the CasP code.[29] In the same way, the energy-loss
straggling �2 can be expressed as the sum

�2 = φ0�
2
0 + φ1�

2
1. (10)

The stopping power and energy-loss straggling for each charge
state q is obtained through Eqn. (1) with the limits of the integrals
corresponding to particles much heavier than electrons.

IMFP of electrons

When the projectile is an electron, the key magnitude of interest is
the IMFP, which is required for quantitative surface spectroscopy
techniques.[3] The IMFP of electrons is also obtained from Eqn
(1), but as the electronic states under the Fermi energy EF are
all occupied by the target electrons, the energy transferred by

an electron of energy E cannot exceed E − EF. In addition, due
to the indistinguishability between the incident electron and a
secondary electron, the maximum energy transfer must be lower
than E/2. Hence

ωmax = min

(
E

2�
,

E − EF

�

)
. (11)

Results

The optical limit of the ELF for Au and Al is depicted in Fig. 1.
The solid lines represent our fitted ELF, with the parameters
corresponding to the outer-electron excitations (see Eqn. (3))
given in Table 1 . The circles correspond to experimental data
of the ELF,[5] and the triangles were obtained from experimental
X-ray scattering factors.[30] The broad spectrum observed in Au is
due to the presence of a large number of interband transitions
that overlap and interact with collective oscillations.[31] It is then
necessary to use seven Mermin-type ELFs to fit correctly the
experimental ELF corresponding to the outer-shell excitations. On
the other side, Al behaves as a free electron gas, and so, the
optical ELF displays a single sharp peak at the plasmon energy;
consequently, the optical ELF was fitted by a single Mermin
function.

A perspective view of the extension of the ELF of Au into the
(k, ω)-space (Bethe surface) is displayed in Fig. 2. We observe that
the three models analyzed here give rise to different ELFs at finite
k. The positions of the ELF peaks present at k = 0 are shifted in ω

for both the extended Drude model and the Penn model, but the
ELFs retain the general shape of the optical spectrum. In contrast,
the Mermin model produces an ELF at finite k where the peaks
are smeared out, changing the shape of the optical ELF. This effect

Figure 1. Energy-loss function of Au and Al, in the optical limit (k = 0),
as a function of the excitation energy. The solid lines represent our
model, circles are experimental data[5] and triangles are obtained from
the X-ray scattering factors.[30] This figure is available in colour online at
www.interscience.wiley.com/journal/sia

Surf. Interface Anal. 2008, 40, 1481–1487 Copyright c© 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/sia



1
4

8
4

C. D. Denton et al.

Table 1. Parameters used to fit the outer-shell electron contributions
to the optical ELF of Au and Al. N is the atomic density of the target.

Target i �ωi (eV) �γi(eV) Ai �ωth,i (eV)

Au 1 9.52 14.97 2.04 · 10−1 2.5

N = 5.90 · 1022 at/cm3 2 15.92 6.26 1.02 · 10−1 2.5

3 25.58 2.18 1.7 · 10−2 2.5

4 38.09 26.67 6.71 · 10−1 2.5

5 64.49 30.48 1.22 · 10−1 2.5

6 99.32 19.05 9.01 · 10−3 2.5

7 402.71 612.23 2.08 · 10−2 2.5

Al 1 14.99 0.95 1.1178 0.0

N = 6.03 · 1022 at/cm3

Figure 2. Energy-loss function of Au in the (k, ω)-space, as calculated by
(a) the MELF-GOS model, (b) the extended Drude model and (c) the Penn
model.

can be better appreciated in Fig. 3, where we have depicted the
evolution of the ELF of Au with different k provided by the three
models. At k = 1 Å−1, the ELF calculated with the three models
almost coincides. However, the Mermin model, represented by the
solid lines, predicts a wider spectrum at larger values of k, in which
the peaks of the optical ELF have been smeared out. In the Drude
and Penn models, the shape of the optical ELF is retained up to
k = 5 Å−1. The dispersion with k represented by the maximum of
the ELF curve is less pronounced in the Mermin model. Although
there is no experimental data of the Au ELF at finite k to decide

Figure 3. Energy-loss function of Au for different values of k, as indicated
in the figure. Solid lines correspond to the MELF-GOS model, dashed
lines to the extended Drude model and dotted lines to the Penn model.
Dash-dotted lines appearing for k = 2.776 Å−1 correspond to an ab initio
calculation made by Gurtubay et al.[32] This figure is available in colour
online at www.interscience.wiley.com/journal/sia

which model produces the more realistic evolution, we have
compared the three models at k = 2.776 Å−1 with the ab initio
calculation of the dynamical response of Au made by Gurtubay
et al.,[32] represented by the dash-dotted lines. The agreement
of this calculations with the results produced by the MELF-GOS
model is rather good, in contrast to the results obtained from the
extended Drude and Penn models. In Fig. 4, we have represented
the evolution of the ELF of Al with k. The same conclusions drawn
for Au apply also for Al. In this case, we have included in the figure
the experimental results of energy-loss spectroscopy obtained by
Batson and Silcox,[14] represented by dash-dotted lines. We can
observe that the ELF from the MELF-GOS model is much more
realistic than the other two models which continues to exhibit a
sharp peak at finite k. In other materials where experimental data
for the ELF at finite k are available (like graphite and liquid water)
the MELF-GOS model has been shown to produce a more realistic
description of the ELF[19,22] than the extended Drude model.
The broadening of the Bethe surface observed experimentally
is consistent with the theoretical expectation that single-particle
excitations should gradually prevail over collective excitation with
increasing k.

This difference in the evolution of the ELF at finite k could have
an influence on the calculation of the basic magnitudes of the
energy loss of projectiles. In order to elucidate this question
we have obtained the stopping power and the energy-loss
straggling of Au and Al for protons as a function of the incident

www.interscience.wiley.com/journal/sia Copyright c© 2008 John Wiley & Sons, Ltd. Surf. Interface Anal. 2008, 40, 1481–1487
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Figure 4. Energy-loss function of Al for different values of k, as indicated
in the figure. Solid lines correspond to the MELF-GOS model, dashed lines
to the extended Drude model and dotted lines to the Penn model. Dash-
dotted lines are experimental data from Batson and Silcox.[14] This figure
is available in colour online at www.interscience.wiley.com/journal/sia

energy, which are shown in Figs. 5 and 6, respectively. The solid
lines represent the calculations using the MELF-GOS model, the
dashed lines correspond to the extended Drude model and the
dotted lines are the results using the Penn model, while the
symbols are the available experimental data.[33−43] The energy-
loss straggling is represented normalized to the Bohr straggling,
given by �2

B = 4πe4NZ2
1 Z2. We observe in Fig. 5 that the stopping

power of Au agrees in the three models at proton energies
above 1000 keV. However, at intermediate and lower energies,
there are important differences in the predictions of the three
models. At energies below 200 keV, the extended Drude and Penn
models have a pronounced descent in the stopping power. As
it will be shown in the following, this descent is caused by the
incorrect description of the single-electron excitations at small k.
The comparison with experiments suggests that the MELF-GOS
model provides the more realistic ELF description. Although the
energy-loss straggling for Au is less influenced than the stopping
power by the model used to describe the ELF, there are important
differences which are more noticeable at lower projectile energies,
and again, the MELF-GOS method provides the better agreement
with the experimental results. Figure 6 shows the case of protons
incident on an Al targets. We observe that the three models agree
at proton energies above∼ 30 keV. At lower energies the extended
Drude model and the Penn model exhibit a pronounced descent
in the stopping power and in the energy-loss straggling, which can

Figure 5. Stopping power and normalized energy-loss straggling of Au
for protons as a function of their incident energy. The calculations were
done using the MELF-GOS model (full lines), the extended Drude model
(dashed lines) and the Penn model (dotted lines). The symbols in the
stopping power graph are the re-compilation of experimental data made
by Paul,[33] while the symbols in the energy-loss straggling graph are
experimental data from Refs.[34−40] This figure is available in colour online
at www.interscience.wiley.com/journal/sia

Figure 6. Stopping power and normalized energy-loss straggling of Al
for protons as a function of their incident energy. The calculations were
done using the MELF-GOS model (full lines), the extended Drude model
(dashed lines) and the Penn model (dotted lines). The symbols in the
stopping power graph are the re-compilation of experimental data made
by Paul,[33] while the symbols in the energy-loss straggling graph are
experimental data from Refs.[38−43] This figure is available in colour online
at www.interscience.wiley.com/journal/sia

be understood by the following reasoning. The optical ELF of Al is
mainly constituted by a single peak corresponding to the collective
excitations of the valence-band electrons. Therefore, the extended
Drude and the Penn models, which obtain the ELF evolution using
a single Drude function, do not describe correctly the individual

Surf. Interface Anal. 2008, 40, 1481–1487 Copyright c© 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/sia
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Figure 7. Inelastic mean free path of electrons in Au and Al as a function of
their energy. The calculations were done using the MELF-GOS model
(full lines), the extended Drude model (dashed lines) and the Penn
model (dotted lines). The symbols are the experimental data from
the indicated Refs. [44-54] This figure is available in colour online at
www.interscience.wiley.com/journal/sia

excitations at small k. If the projectile velocity v is lower than
the Fermi velocity of the target vF, the proton does not produce
electronic excitations in the extended Drude or the Penn model.
In contrast, the ELF described by the MELF-GOS model behaves
at small k like a Lindhard ELF giving the correct description of
the individual excitations. At large projectile velocities, large-k
individual excitations are well described by a Drude function, and
hence, the three models agree in the predictions. The incorrect
description of the small-k individual excitations by the extended
Drude and Penn models is also present in the case of Au, but as
the optical ELF of Au has multiple peaks, the decrease is not so
pronounced.

We have also studied the influence of the ELF description on the
IMFP of electrons. In Fig.7 we show the calculations of the IMFP as
a function of electron energy E above the Fermi level of Au and
Al targets. The solid lines are the calculations using the MELF-GOS
model, the dashed lines are the results obtained with the extended
Drude model, while the results obtained with the Penn model
are represented by dotted lines. The symbols are the available
experimental data.[44−54] The first attempts to measure IMFPs had
large scatter due to lack of film uniformity.[55] Furthermore, due to
effects of elastic scattering, these experiments did not measure the
IMFP but what is now called the effective attenuation length.[56]

Note that we have included in the figure experimental data that
were measured after 1990. The only exceptions were Refs. [44,51,52]

because these papers reported results of IMFP for electrons with
energies under 50 eV. We observe that the three models predict
similar values of IMFPs at energies above 100 eV. However, at
lower energies, the calculated IMFP of electrons in Au using the
MELF-GOS model can be 45% (90%) lower than that obtained with
the extended Drude (Penn) model at electron energies of ∼ 50 eV.
The comparison with experimental data seems to confirm that the
MELF-GOS model provides the better agreement, especially in Al.
The three models also agree with the IMFP values recommended

in Ref. [55], which result from fits to calculated IMFPs from several
groups for electron energies ranging from 50 to 104 eV.

De la Cruz and Yubero[28] have also found similar differences
in IMFP calculations of electrons in several materials, depending
on the model used for the ELF description. On the other hand,
Akkerman et al.[57,58] stated that the calculation of the stopping
power and the IMFP is unaffected by the model chosen for the
momentum transfer extension (k �= 0), but we have found here
that this statement is valid only for large projectile energies.

Conclusions

We use the MELF-GOS model, the extended Drude model, and the
Penn model to obtain the ELF of Au and Al from optical data for
finite k. Among the three models, we observe that the MELF-GOS
model leads to an ELF at finite k where the structure of the optical
ELF is distorted, unlike the two other models where the shape
of the optical ELF is retained. The different descriptions of the
ELF lead to differences in the calculations of the stopping power
and energy-loss straggling of Au and Al for protons, especially for
low and intermediate projectile energies. At these energies, the
MELF-GOS model provides higher values of the stopping power
and of the energy-loss straggling for protons, in better agreement
with experiments, than both the extended Drude model and the
Penn model. In a free-electron gas material, such as Al, the three
models agree in the calculation of the stopping power and of the
energy-loss straggling for protons at projectile velocities above
the Fermi velocity of the material.

The calculation of the IMFP of electrons also depends on the
model chosen to calculate the ELF. At projectile energies larger
than 100 eV, the three models yield similar results, but at lower
electron energies the predictions of the three models can differ
significantly. Comparison with experiments suggests that the
MELF-GOS model provides the more reliable description of the
ELF at finite k.

It is important to emphasize that the same theory has been
applied to treat the energy loss of electrons and heavier particles
over a broad range of projectile energies. In the case of electrons,
we analyze energies of hundreds of eV that can be useful for
surface-spectroscopic techniques like AES or XPS.[59] We also
study the range of energies under 100 eV, normally not reported
in the bibliography, that can be useful for UPS or studies of the
valence band and of the Fermi surface.[59,60] For heavier projectiles
(protons) we study the energy loss in the range of keVs or MeVs
used in several analytical techniques like RBS or PIXE, or several
applications, such as implantation of ions or tumor treatment.[1,2]
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