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Abstract
We describe the perturbation induced in a plasma by a charged particle in
circular motion, analysing in detail the evolution of the induced charge, the
electrostatic potential and the energy loss of the particle. We describe the
initial transitory behaviour and the different ways in which convergence to final
stationary solutions may be obtained depending on the basic parameters of the
problem. The results for the stopping power show a resonant behaviour which
may give place to large stopping enhancement values as compared with the case
of particles in straight-line motion with the same linear velocity. The results
also explain a resonant effect recently obtained for particles in circular motion
in magnetized plasmas.

1. Introduction

The perturbation produced by swift charged particles in a plasma has been studied extensively
over the years using various theoretical approaches [1–4], and some of these developments have
also been widely used in the case of swift ionized particles in solids [5–10]. It is well known
from these studies that the perturbation induced in the medium as a result of the dynamical
screening by the plasma electrons shows an important oscillatory density wave trailing behind
the projectile and moving collectively with the same projectile velocity. This wake field has
important effects on the excitations produced in the medium as well as on the dynamics of other
moving particles [5–12]. The shape of this wake has been described in previous references but
only for the case of ions moving along straight trajectories.

On the other hand, recent studies of the interaction of charged particles with magnetized
plasmas [13,14] have described the changes in the energy loss of the particles by the effect of
strong magnetic fields. These studies have been made using both classical [13] and quantum
mechanical [14] formulations, following the lines of the dielectric formalism. The results are
of interest for studies of energy dissipation of particles in magnetized plasmas and cover a very
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wide range of systems, including laboratory plasmas for inertial confinement fusion research,
for instance, as well as several other systems of astrophysical interest, such as white dwarfs
and neutron stars where very high magnetic fields are produced. For a general description of
the different cases of interest we refer the reader to the references quoted before. Here we shall
concentrate on the study of one of the most interesting results emerging from these studies,
which is the appearance of a pronounced resonance effect in the energy loss of particles moving
along circular trajectories, with velocities perpendicular to the magnetic field lines [13, 14].
These resonances may be tuned up by changing the value of the magnetic field.

The purpose of this work is to analyse this resonance phenomenon. Here we analyse in
detail the characteristics of the perturbation induced by a charged particle in circular motion
within the plasma. In the present description we shall use a different approach, which, although
being fully compatible with the previous ones [13, 14], permits us to understand in a detailed
way the origin of the resonance effect, as well as the approach to the equilibrium situation
described in the previous papers. In particular, we shall consider here the shape of the induced
potential and the build-up of the screening charge around the test particle, and shall finally
describe the modifications in the energy loss of the particle as compared with the better known
case of particles in straight trajectories. Due to the periodicity of the circular motion, we shall
show the occurrence of resonance (or antiresonance) conditions, which may have a large effect
on the energy loss rate. The results of this study will be compared with recent calculations of
the energy loss rate of particles in magnetized plasmas [13,14]. As will be shown, the present
study provides a microscopic explanation of the resonance effects previously obtained in the
case of particles moving perpendicularly to an external magnetic field within the plasma.

The paper is organized as follows: in the next section we describe the calculation of the
induced charge and potential, and derive the stopping power. In section 3 we show the results
of our calculations, and finally, in section 4, we discuss the results and the relationship with
previous studies for particles in magnetized plasmas.

2. Formulation

2.1. Induced charge and potential

We consider a point particle with charge Ze moving with angular velocity � in a circular orbit
of radius a with centre in the origin of a Cartesian coordinate frame. In order to describe the
transitory response of the medium, we assume that at t = 0 the particle begins its motion with
speed v = �a at the point (x = a, y = 0). In this case the charge density ρf associated with
the particle, in cylindrical coordinates (ρ, ϕ, z), is given by

ρf (r, t) = Zeu(t)δ(z)
δ(ρ − a)

ρ
δ[ϕ − (�t − 2πm(t))], (1)

where u(t) is the unit step function: u(t) = 0 for t < 0, u(t) = 1 for t � 0 and m(t) is a
multistep function, given by

m(t) =




0, if t ∈ [0, T0)

1, if t ∈ [T0, 2T0)

2, if t ∈ [2T0, 3T0), . . . ,

(2)

with T0 = 2π/� being the period of the circular motion.
In order to describe the response of the medium, we employ the macroscopic dielectric

function in the high-frequency limit with a plasma frequency ωp and damping constant γ ,
which describes the plasma resonance behaviour for frequencies ω ∼ ωp,

ε(ω) = 1 − ω2
p

ω(ω + iγ )
. (3)
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This form of the plasma resonance is particularly useful to study the response of the system
in the case of fast particles moving with velocities perpendicular to the magnetic field lines [13]
as in the present case.

From a Fourier analysis of the corresponding functions, we obtain the relation between
the induced charge density (ρind ) and the free charge density associated with the particle (ρf )
in the frequency domain as

ρind(r, ω) = ξ(ω)ρf (r, ω), (4)

where

ξ(ω) ≡ 1

ε(ω)
− 1. (5)

Taking the inverse Fourier transform of equation (4), we obtain the following relation in
the time domain:

ρind(r, t) =
∫ ∞

−∞
ξ(t − t ′)ρf (r, t

′) dt ′, (6)

where ξ(t) is the time-inverse Fourier transform of equation (5).
Inserting equation (3) in (5), the following temporal response function is obtained after

integration:

ξ(t) = −ω2
p

ω′
p

sin (ω′
pt)e

−(γ /2)tu(t), (7)

where ω′
p ≡

√
ω2

p − γ 2/4.

Substituting equations (1) and (7) in (6), we finally obtain the polarization charge density
induced in the medium

ρind(r, t) = −Zeω2
p

�ω′
p

δ(ρ − a)δ(z)

ρ

∑
n

sin (ω′
pτn)e

− γ

2 τnu(τn), (8)

with

τn ≡ �t − 2πn − ϕ

�
, n = 0, 1, 2, . . . . (9)

This distribution corresponds to a line of charge extending along the circular orbit. Notice that
the step function u(τn) introduces a cut-off (or a maximum value of n) such that the number
of terms in the sum increases with time according to the value of the parameter τn.

From the above equation it is straightforward to derive the induced electric potential

φind(r, t) =
∫ 2π

0

λind(ϕ
′, t)a dϕ′√

ρ2
0 + ρ2 + a2 − 2ρa cos(ϕ − ϕ′) + z2

, (10)

where

λind(ϕ, t) = −A
∑
n

sin (ω′
pτn)e

−(γ /2)τnu(τn) (11)

is the induced linear charge density, with

A = Zeω2
p

vω′
p

. (12)

In equation (10) ρ0 = h̄/2mv is a quantum cut-off value which takes into account the behaviour
of the response function in the short-wavelength limit as described in previous papers [7,8,12];
m is the electron mass.
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Figure 1. Illustration of the parameters used in this description: charge Ze moving along a circle
of radius a within a plasma. The values of the induced potential and charge density will be analysed
in terms of the relative angular coordinate β (0 < β < 2π ).

Notice that in equation (11) the spatial periodicity (in the angular dependence) of the
function sin(ω′

pτn) is characterized in terms of the parameter

κ ≡ ω′
p

�
= aω′

p

v
. (13)

From the analysis of equation (11) we observe the following.

(a) If γ = 0 and κ = (2' + 1)/2 (' = 0, 1, 2 . . .), then the sine functions in the sum cancel
each other out pairwise, so the charge induced in a given period is cancelled by the charge
induced in the following period.

(b) If γ = 0 and κ = ' + 1, then the charge induced in each period contributes with an
identical additional term, leading to a growing accumulation of charge.

In the first case, the particle sees an oscillatory induced charge which is turned on and off
with a time period T0. In the second, the particle sees a permanently growing induced charge.
In both cases one obtains nonstationary solutions.

We shall show now that when γ > 0 the induced charge, and therefore also the potential,
reaches in all cases a final stationary state, as seen from a frame of reference that rotates with the
particle. For this purpose we take a point of observation whose angular coordinate ϕ changes
with time according to the law

ϕβ(t) = �t + β − 2πm′(t) (14)

where β is an angular coordinate that varies in the restricted interval [0, 2π), and m′(t) is a
multistep-like function with the following behaviour:

m′(t) =




0, if t ∈ [0, T0 − β/�)

1, if t ∈ [T0 − β/�, 2T0 − β/�)

2, if t ∈ [2T0 − β/�, 3T0 − β/�), . . . .

(15)

In this way, the variable β denotes a relative angular coordinate corresponding to an
observation point which stays stationary with respect to the moving particle, and is situated
(on the orbit) at an angle β measured from the instantaneous position of the particle, in the
anti-clockwise direction, as illustrated in figure 1.

Using equation (14) in (9) we observe that equation (11) may be expressed as a function
of (β, t), taking

τn = 2π(m′(t) − n) − β

�
(16)

which yields the time evolution of the induced charge at the observation point with ϕ = ϕβ(t).



Stopping power and polarization induced in a plasma by a fast charged particle in circular motion 1459

(1
0

–
4
a.

u.
)

2 4 6 8 10
0

1

2

3

4

5

6

λ i
nd

t/ To

ωp

ωp

γ = 0.05 

γ = 0.1 

Figure 2. Evolution of the induced linear charge density λind , equation (11), for a point located on
the orbit of the particle and at a relative angular position β = π/8 ahead of the particle (moving
with the same angular frequency as the particle), as a function of time t , for v = 2.7 au, a = 4v/ω′

p ,

ωp = 1.364 × 10−3 au and for γ = 0.05ωp and 0.1ωp . The steps in the values of λind occur when
a new orbital period is completed. The value of the damping constant γ has an important influence
on the convergence of the series and on the final asymptotic value.

2.2. Stopping power

From equation (10) we can obtain the induced electric field Eind(r, t) = −∇φind(r, t)

and then calculate the stopping force, or energy loss per unit distance, F = dE/dl =
ZeEind(r, t)·ϕ|r=r0(t) (where dl denotes a differential pathlength along the circular trajectory).
Hence, we define the instantaneous stopping power as

S(t) ≡ − dE

dl

∣∣∣∣
t

= Ze

a

∂φind(r, t)

∂ϕ

∣∣∣∣
r=r0(t)

(17)

where the derivative is calculated at the instantaneous position of the particle, r0(t) = (ρ =
a, ϕ = �t − 2πm(t), z = 0). We obtain in this way

S(t) = −Zea2
∫ 2π

0

λind(ϕ
′, t) sin [�t − 2πm(t) − ϕ′] dϕ′

{ρ2
0 + 2a2[1 − cos (�t − 2πm(t) − ϕ′)]} 3

2

. (18)

3. Results

In figures 2–6 we show the results of calculations of induced charge and electric potential for
various situations. The present calculations correspond to an ion of unit charge (Z = 1) in a
plasma with a fixed plasma frequency ωp for various values of the damping constant γ , particle
speed v and circular radius a. For comparative purposes we use here the same values as in [13]
(electron density n = 1018 cm3 and plasma frequency ωp =

√
4πne2/m = 5.64 × 1013 s−1).

In the following the values of the quantities will be given in atomic units (in particular,
ωp = 1.364 × 10−3 au). Note that all the values used here may be re-scaled to represent
other physical situations.

In figure 2 we show the evolution of the induced linear charge density λind for a point on
the circular orbit at a relative angular position β = π/8 ahead of the particle, as a function of
time t , for a velocity v = 2.7 au and for γ = 0.05ωp and 0.1ωp. We observe that the value of
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ṕwa=

4
wṕ
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Figure 3. Calculations of the induced linear charge density for a fixed velocity v = 2.7 au and
for three values of the orbit radius (a = 2v/ω′

p , 4v/ω′
p and 8v/ω′

p); ωp = 1.364 × 10−3 au, and
γ = 0.1ωp . The left-hand panels show the values of the induced linear density at the reference
positions β = π/4, π/8 and π/16, as a function of time. The central panels show the whole
variation of the induced linear density along the trajectory circle (0 < ϕ < 2π ) at fixed times,
t/T0 = 20, 10 and 5, respectively. The values indicated by vertical lines correspond to the saturation
values (for the particular positions β = π/4, π/8 and π/16) shown in the left-hand panels. The
panels on the right illustrate the whole behaviour of λind . These wake structures rotate together
with the particle once the final equilibrium state is reached (i.e., they are stationary with respect to
the particle).
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Figure 5. Instantaneous values of the induced potential φind (ρ = a, ϕ, z = 0) as a function of
coordinate ϕ at a time t = 10T0, and for v = 2.7 au, ωp = 1.364 × 10−3 au, γ = 0.1ωp and
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p. The solid point at the origin indicates the instantaneous position of the charge.

-20 0 20 40

x (a.u. )

y 
(a

.u
.) a

Ze

ot=10T

-30

-20

-10

0

10

20

30

Figure 6. Instantaneous view of the wake potential on the plane of the motion (z = 0), namely
φind (ρ, ϕ, z = 0), for v = 2.7 au, ωp = 1.364 × 10−3 au, γ = 0.1ωp , a = 4v/ω′

p and t = 10T0.

λind increases by steps every time a new period is completed. The case γ = 0.05ωp illustrates
how in the case of small damping the value of λind shows a large increasing behaviour (which
diverges when γ = 0). In fact, the finite value of γ provides the attenuation factor which
allows convergence of the series. Thus, for γ = 0.1ωp a smaller saturation value of λind is
obtained (and a faster convergence), as also seen in the figure.
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In figure 3 we show calculations for a fixed speed v = 2.7 au, and for three values of
the orbit radius: a = 2v/ω′

p, 4v/ω′
p and 8v/ω′

p. The left-hand panels show the values of the
induced linear density at selected positions β = π/4, π/8 and π/16, as a function of time.
The central panels show the whole variation of the induced linear density along the trajectory
circle (0 � ϕ < 2π ) for large enough times (t/T0 = 20, 10, 5), such that in all cases the
stationary state has been reached. The values indicated by vertical straight lines correspond
to the saturation values (for the particular positions β = π/4, π/8 and π/16) shown in the
left-hand panels. Finally, the panels on the right illustrate the whole behaviour of λind . These
wake structures rotate with the particle once the final equilibrium state is reached (i.e., they
are stationary with respect to the moving particle). Notice in the last case the very asymmetric
behaviour of λind for points ahead of and behind the particle; this is due to the fact that for the
large radius value (a = 8v/ω′

p) chosen in this case the induced charge density has relaxed to
equilibrium when the particle returns to a previously explored point (this is because the value
of T0 = 2πa/v in this case is much larger than γ−1). We also note that this particular result
agrees very closely with the image of a ‘linear’ wake bent around a circle of radius a; this
simple image applies when the wavelength of the wake, 2πv/ω′

p, is much smaller that 2πa.
In figure 4 we show the value of the induced potential on points along the trajectory with

β = 0 and π/8. In the first case we notice the steplike build-up of the asymptotic value
through abrupt jumps every time a new circuit is completed. The case β = 0 gives the value
of the induced potential applied to the charge itself. It shows a more rapid convergence to the
saturation values after some initial fluctuations.

A picture of the complete angular variation of the induced potential after the asymptotic
behaviour is obtained is shown in figure 5, for t = 10T0. This may also be interpreted
with the image of a wake potential wrapped around itself along a circle; but one should
notice that the values are modified with respect to those for a particle in rectilinear motion
due to the periodic matching conditions; i.e., in the present case, the oscillatory wake
potential is simultaneously ahead of as well as behind the particle once the equilibrium
state is achieved. A still more complete view of the spatial dependence of the rotating
wake potential is shown in figure 6, where we show the induced potential on the
plane z = 0, i.e. φind(ρ, ϕ, z = 0), which illustrates more completely the whirling
behaviour.

Finally, we have calculated the evolution of the instantaneous stopping power values,
S(t)/SB , using equations (18) and (19), and the results are shown in figure 7 for three values
of the orbit radius: a = 2v/ω′

p, 4v/ω′
p and 8v/ω′

p. As may be observed, the approach to the
asymptotic value, SA = limt→∞ S(t), is produced through a sequence of steps of decreasing
height. In addition, the height of these steps also decreases when the value of a increases.
The reason for this behaviour is again the effect of the damping constant γ . It may be shown
that in the limit γ → 0 the heights of all the steps become equal and the stopping power
value increases without limit for the three cases shown. The controlling effect of γ may be
illustrated in particular for the case of largest radius (a = 8v/ω′

p) by comparing with figure 3
(bottom right panel), which shows that the wake is strongly attenuated in the time taken by the
particle to complete a circuit (T = 2πa/v  γ−1). This also explains the fast approach to
equilibrium of the stopping value in this case; in particular, we notice that in the sudden initial
rise of the stopping power the particle nearly attains the final saturation value.

The three cases shown here correspond to positive phase matching conditions. This occurs
whenever the value of the orbit radius is of the form a = κv/ω′

p, where κ is an integer number.
In these cases, there is an always positive addition of terms in the series of contributions to
the induced charge and potential, equation (11), yielding a maximum accumulative effect and
therefore a maximum stopping power. In other words, this corresponds to a resonant behaviour.
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Figure 7. Stopping power, S(t) = dE/dl (normalized to the stopping value for a straight
trajectory, SB ), as a function of time, for v = 2.7 au, ωp = 1.364 × 10−3 au, γ = 0.1ωp

and for three values of the orbit radius: a = 2v/ω′
p , 4v/ω′

p and 8v/ω′
p .

For intermediate values of a the subsequent terms in the series (11) are affected by variable
phases, leading to positive and negative contributions, and hence to smaller final stopping
values.

In order to show the importance of these effects we compare the final stopping power
values with that corresponding to a particle in straight line motion (to be called the Bohr
stopping value) given by

SB = (Zeωp)
2

vω′
p

∫ ∞

0

sin (ω′
pξ/v)

(ρ2
0 + ξ 2)

3
2

e−γ ξ/2v ξ dξ, (19)

which for small values of γ reduces to a well known expression [2],

SB
∼= (Zeωp)

2

v2
ln

(
kmaxv

ωp

)
, (20)

with kmax = 1/ρ0.
In figure 8 we show the behaviour of the stopping power ratio SA/SB (where SA is the

asymptotic, or stationary, stopping power for the circular trajectory) versus the parameter
κ ≡ aω′

p/v (which may correspond for instance to varying the orbit radius a). By comparison
with figure 3 of [13] we conclude that we obtain the same resonant behaviour in the energy
loss for the stationary conditions considered in that work. We also note that the value of
the adimensional damping parameter γ /ωp determines the maximum stopping-enhancement
values obtained for κ = 1, 2, 3, . . . . In addition, we observe that antiresonance conditions
may also be obtained for intermediate values of κ (κ = 1.5, 2.5, . . .), where the stopping
power drops to nearly zero values if the damping is small. These near-cancellation effects
are due to negative interferences in the self-interaction of the charge with its own induced
field, an effect that may be also particularly important in the case of circular motion (i.e.,
due to the circular motion, the conditions for positive or negative interference effects will
arise).
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power for a circular trajectory and SB the stopping power for a particle with the same velocity but
moving along a straight trajectory) versus the parameter κ ≡ ω′
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ωp = 1.364 × 10−3 au, γ = 0.1ωp and 0.05ωp . A resonant behaviour is obtained, with
maximum values for κ = 1, 2, 3, . . . , and minimum values for κ = 1.5, 2.5, 3.5, . . . (antiresonance
conditions). This resonant behaviour becomes more pronounced the smaller the value of the
damping term γ /ωp .

4. Conclusions

We have described the main characteristics of the induced charges and potential corresponding
to charged particles moving in circular trajectories within a plasma.

The result for the induced potential shows the formation of a ‘rotating wake’ pattern,
which may be explained by the image of a linear wake wrapped around itself in a circular way
and subject to the necessary phase matching conditions.

The self-interaction of the particle is strongly affected by the periodical shape of the
induced field. As a result, the energy loss rate shows a resonant effect which depends on the
matching conditions, through the values of aω′

p/v and of the adimensional damping parameter
γ /ωp, and may produce a significant enhancement of the energy loss with respect to the
reference value corresponding to particles moving with the same speed but in a straight-line
trajectory.

The inclusion of damping effects in the response function becomes essential in order to
obtain a non-divergent stationary limit at large times due to an accumulation of effects.

The present results serve to understand the physical origin of the resonant effect in the
energy loss of ions in circular trajectories within magnetized plasmas recently predicted by
Nersisyan [13] for classical plasmas and derived also by Steinberg and Ortner [14] for dense
quantum plasmas. These previous studies describe the asymptotic resonant behaviour which
may be characterized by a stationary solution in the rotating frame. In addition to explaining
this ‘stationary’ case, we analyse here in detail the previous transitory behaviour; this may
be of interest to describe the time evolution of the local perturbations and fluctuations in the
energy loss of ionized particles entering a region of high magnetic fields. Possible applications
of these results to laboratory or astrophysical plasmas have been noted before [13, 14].
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