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Abstract Since the onset of glaciation following the

Oligocene (30–28 Ma), the prevalence of increasingly cold

conditions has shaped the evolution of the Antarctic biota.

Two hypotheses, postglacial recruitment from extra-

regional locations and in situ persistence, have been pro-

posed to explain the biogeography of the contemporary

species-poor terrestrial Antarctic biota. Bryophytes, which

form a major group of the Antarctic flora, exhibit a strong,

inherent ability to survive cold conditions but also have

high long-distance dispersal capacities, which are com-

patible with both hypotheses. Here, we test these hypoth-

eses by means of population genetic and phylogeographic

analyses of the cosmopolitan moss Bryum argenteum. We

find evidence for at least three independent colonisation

events of the species in Antarctica. Ancestral area recon-

struction coupled with molecular dating suggests coloni-

sation times of the different Antarctic clades ranging from

four million years for the oldest lineage to half a million

years for the youngest lineage. This suggests multiple

colonisation events of Antarctica by this species during

several glacial cycles within the Pleistocene, Pliocene and

possibly late Miocene. This is the first study to demonstrate

in situ persistence of bryophytes in Antarctica throughout

previous glaciations.

Keywords Glacial refugia � Dispersal � Bryophytes �
Molecular dating � Phylogeography

Introduction

The prevalence of increasingly cold conditions has shaped

the evolution of the Antarctic biota since its separation
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from the other Southern Hemisphere continents during the

final stages of the breakup of the supercontinent Gondwana

(Convey and Stevens 2007; Convey et al. 2009; Fraser

et al. 2012). Climate cooling was accompanied by a

decrease in diversity of the angiosperm-dominated vege-

tation that inhabited the Antarctic Peninsula and parts of

the continent during the Eocene. A mosaic of southern

beech and conifer-dominated woodlands and tundra,

comparable with that in parts of southern South America

(Patagonia) today, characterised the region throughout the

Oligocene (approximately 34–23 Ma). By the middle

Miocene (approximately 16–11.6 Ma), localised pockets of

tundra persisted until at least 12.8 Ma (Anderson et al.

2011). The transition to cold-based, alpine glacial regimes

characterised by perennially dry and frozen conditions

from 13.85 Ma has not subsequently been reversed (Lewis

et al. 2008). Since the late Miocene, the Antarctic ice

sheets have repeatedly thickened and advanced beyond

their current limits onto the continental shelf. Ice sheets are

believed to have overrun most currently ice-free areas

during glaciations in the Pliocene (5–2.6 Ma) and the

Pleistocene (2.6 Ma–10 Ka), including the Last Glacial

Maximum (LGM; around 22–17 Ka) (Convey et al. 2009,

and references therein; Mackintosh et al. 2013). The ter-

restrial biota remaining in Antarctica today is depauperate

in terms of species diversity and is often cryptic. The major

groups of organisms represented include micro-inverte-

brates, cryptogams and microbial groups (Convey 2013).

Two main hypotheses have been proposed to explain

how the contemporary terrestrial Antarctic biota endured

the glacial events of the Pleistocene (Convey and Stevens

2007; Convey et al. 2008). The first, and long-held but

generally untested, view is that the large majority of the

Antarctic terrestrial biota was eradicated from both the

Antarctic continent and the associated offshore islands and

archipelagos of the Scotia Arc (including sub-Antarctic

South Georgia). The considerably expanded and thickened

ice sheets would have caused a complete loss of terrestrial

exposures and habitats during the glacial maxima, as is

consistent with current glaciological model reconstruc-

tions. As a consequence, most or all current Antarctic

terrestrial biota would have had to (re-)colonise the conti-

nent after the LGM, either from disjunct populations or

from refugia. However, while the long-distance dispersal

(LDD) capacity of bryophytes would potentially have

facilitated (re)colonisation on such a timescale, the ability

to disperse over long distances is apparently more limited

for many other groups of Antarctic organisms. An addi-

tional weakness of the hypothesis is that many elements of

the contemporary Antarctic biota show high levels of

endemism (Øvstedal and Lewis Smith 2001; Pugh and

Convey 2008), which could not have arisen after the LGM.

The persistence of such an endemic biota would require

refugia beyond the current confines of Antarctica (for

instance, in the more distant sub-Antarctic islands or the

other Southern Hemisphere continents), which would have

been situated beyond the current distributions of many

species. Therefore, this hypothesis would imply multiple

colonisation events out of Antarctica when refugia were

required, and subsequent extinction from them once Ant-

arctica was recolonised. The alternative hypothesis is that

species have survived in situ, in multiple refugia that must

have been present in different regions across Antarctica.

This hypothesis has received increasingly strong support in

recent years from both molecular and classic biogeo-

graphical studies, as well as from geological and geomor-

phological evidence demonstrating the diachrony of ice-

sheet expansions around Antarctica, and refining both the

thickness and timing of previous episodes of maximum ice-

sheet extent (Convey et al. 2008, 2009; Pugh and Convey

2008; Vyverman et al. 2010; Fraser et al. 2012).

Bryophytes (mosses and liverworts) are the dominant

land plant flora in Antarctica, reaching their greatest

diversity and extent in the Antarctic Peninsula and Scotia

Arc (Ochyra et al. 2008; Convey 2013). As a group, they

are generally regarded as possessing strong LDD capaci-

ties, supported by both direct (van Zanten 1978, 1981;

Lönnel et al. 2012; Sundberg 2013; Lewis et al. 2014) and

indirect (see Szövényi et al. 2012 for review) evidence.

These characteristics would, in principle, equip them well

for recolonisation of Antarctica following any episode of

regional extinction. Elsewhere, recent evidence points to

the major role of oceanic islands as glacial refugia for the

subsequent (re-)colonisation of continents (Laenen et al.

2011; Hutsemékers et al. 2011). However, the geographic

scale of Antarctic isolation from other land masses, along

with protection from direct north–south transfer by atmo-

spheric and ocean currents, gives the continent consider-

able geographic isolation (Barnes et al. 2006).

Alternatively, a feature common among most bryophytes is

their ability to grow at low (sub-optimal) temperatures.

More than half of the 40 temperate species investigated by

Furness and Grime (1982) showed a growth reduction of

less than 50 % at 5 �C compared with growth at their

optimal temperature, and this feature has also been

described in Arctic and Antarctic bryophytes (Longton

1988). Indeed, many species, including some from the

tropics, seem to be physiologically preadapted to cold and

can survive temperatures ranging from -10 to -27 �C

(Glime 2007). Recently, La Farge et al. (2013) have pro-

vided evidence for totipotent capacity (the ability of a cell

to dedifferentiate into a meristematic state, and subse-

quently regrow) in Arctic bryophyte tissue buried by ice for

400 years, and Roads et al. (2014) have reported regrowth

from gametophytes in moss banks preserved in permafrost

for over 1.5 Ka. Furthermore, population genetic data for
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the temperate moss Homalothecium sericeum (Hedw.)

Schimp. support persistence of the species in micro-refugia

within the extensively glaciated northern Europe during the

LGM (Désamoré et al. 2012). These examples suggest that

bryophytes may be viable candidates to have survived

Antarctic glacial cycles in situ.

Using the cosmopolitan moss Bryum argenteum Hedw.

as a model, Hills et al. (2010) interpreted the lower genetic

diversity observed in Antarctic vs non Antarctic samples as

a consequence of a lower rate of DNA substitution and

isolation in refugia within Victoria Land since the Pleis-

tocene. However, in the absence of (1) evidence for het-

erogeneity of DNA substitution rate among lineages, (2) an

explicit time frame, (3) representative sampling across the

entire range of the species and (4) explicit analyses of

population genetic structure, the hypothesis of survival in

extra-Antarctic areas with subsequent (re-)colonisation

cannot be excluded.

Here, we present a reconstruction of the phylogeography

of B. argenteum at the global scale, and use molecular

dating techniques to determine whether its presence in

Antarctica is the result of recent (re-)colonisation from

Pleistocene refugia outside Antarctica (H1), or whether it

survived the Quaternary and Tertiary glaciations in situ

(H2). If H1 holds true, we would expect Antarctic popu-

lations to be of recent, postglacial origin and therefore to

show relatively little genetic differentiation from popula-

tions from other regions. Under that hypothesis, colonisa-

tion events might occur more frequently than under a

scenario of long-term in situ persistence. Therefore, we

would also expect under H1 a high gene flow from popu-

lations outside Antarctica, which could lead to a decrease

in the signature of any founder effect. Conversely, if H2

holds true, we would predict that extant Antarctic popu-

lations derive from ancestors distributed on this continent

before the LGM. We would further expect, provided that

gene flow with the sub-Antarctic islands and other South-

ern Hemisphere areas has been limited, Antarctic popula-

tions to be genetically isolated from other regions and

exhibit a clear phylogeographic signal (sensu Pons and

Petit 1996).

Materials and methods

Specimen sampling and molecular protocols

B. argenteum is a cosmopolitan, weedy moss species that

thrives in disturbed environments. Its natural occurrence in

Antarctica is indicated by its presence in the earliest

botanical records for the continent and its widespread

distribution within the regions where it occurs (Ochyra

et al. 2008; Cannone et al. 2013). A total of 154 accessions

of B. argenteum were sampled from Africa, America, Asia,

Antarctica, the sub-Antarctic islands, Australasia and

Europe (Appendix 1 in Supplementary material 1). From

these accessions, 28 samples were taken from previously

published papers (Hills et al. 2010; Pisa et al. 2013; Sko-

tnicki et al. 2005) available in GenBank. The remaining

samples were sequenced for this study and included 47

specimens collected by the authors and colleagues; all

retained at the herbarium of the Universidad de Murcia,

Spain (MUB), and 70 specimens held at the institutional

herbaria of the British Antarctic Survey, UK (AAS); Cal-

ifornia Academy of Sciences, USA (CAS); Eszterházy

Károly College, Hungary (EGR); Institute of Terrestrial

Ecology, UK (ACHE); Main Botanical Garden of the

Russian Academy of Sciences, Russia (MHA); Moscow

State University, Russia (MW); New York Botanical

Garden, USA (NY); Royal Botanic Garden Edinburgh, UK

(E); Swedish Museum of Natural History, Sweden (S),

University of Connecticut, USA (CONN), and the private

herbaria of D.T. Holyoak and B. Goffinet. Four of the

closely related species to B. argenteum (Wang and Zhao

2009) were selected as outgroup species (Appendix 1 in

Supplementary material 1). The geographic location of the

accessions is detailed in Fig. 1.

Total genomic DNA was extracted following the pro-

tocol described in Werner et al. (2002), or using the

DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany).

PCR amplification and sequencing of the nuclear internal

transcribed spacer (ITS) region were performed using the

protocol described in Pisa et al. (2013). Most of the

amplifications were carried out using universal primers

AB101 and AB102 (Douzery et al. 1999), with some

nucleotide modifications to adapt these primers to B. ar-

genteum. In some cases, sequences were generated using

universal primers ITS-A and ITS-B as described in Blattner

(1999), employing a similar PCR step as in Pisa et al.

(2013), with exceptions being the use of the Taq PCR Core

Kit (Qiagen GmbH, Hilden, Germany) and an annealing

temperature of 50 �C. Forward and reverse sequence

fragments for both ITS1 and ITS2 were edited and

assembled using BioEdit 7.05 (Hall 1999), and every

polymorphism was checked from the chromatograms. The

sequences were aligned by eye, adding gaps where neces-

sary to conserve homology between sequences (Appendix

2 in Supplementary material 2). Gaps were counted with

SeqState (Müller 2005) using complex indel-coding. The

number of polymorphic sites was calculated with DnaSP

(Librado and Rozas 2009).

ITS remains the most widely used source of information

on genetic variation at the species level in plants and fungi

(reviewed by Nagy et al. 2012), although its use in phy-

logenetics has been questioned due to the potential pre-

sence of paralogs and pseudogenes (see Nieto Feliner and
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Rosselló 2007 for review). In mosses in particular, evi-

dence for ITS paralogy was recently reported (Košnar et al.

2012). We consider that the use of ITS in B. argenteum was

justified in the current study as no conflicting base calls

during direct sequencing were observed, suggesting that

the presence of intragenomic paralogous copies is unlikely.

Population genetic analyses

The sequences were grouped into haplotypes using DnaSP.

For each of the seven geographic regions defined above, we

calculated haploid diversity (h), unbiased haploid diversity

by population (uh) and frequency of endemic haplotypes

(x) using GENALEX 6.5 (Peakall and Smouse 2006) and

Tajima’s D using Arlequin 3.5 (Excoffier et al. 2005).

Genetic differentiation among geographic regions and

presence of phylogeographic signal in the data were

assessed by means of comparative analyses employing

fixation index (FST) and NST. NST is a measure of genetic

differentiation among populations; it is analogous to FST

but takes the genetic distances among genotypes (here, the

pairwise distance among them) into account (Pons and

Petit 1996). When NST [ FST, it means that mutation rates

are higher than dispersal rates between geographical

regions, generating a phylogeographic pattern. The signif-

icance of FST and NST were tested by constructing the

distribution of the null hypothesis by means of 9,999 ran-

dom permutations of individuals among geographic

regions, as implemented by SPAGeDI 1.3 (Hardy and

Vekemans 2002). The existence of a phylogeographic

signal was tested by assessing the significance of the

observed difference between NST and FST values by means

of 9,999 random permutations of the allele distance matrix.

Global F and N statistics among the seven geographic

regions were computed, as well as pairwise statistics

among regions. The correction of Benjamini and Yekutieli

(2001) for multiple tests was applied to determine the

significance of the pairwise statistics.

Phylogeny, molecular dating and ancestral area

reconstructions

The phylogeny and divergence time among ITS genotypes

within B. argenteum were investigated using BEAST

v1.7.5 (Drummond et al. 2012). In the absence of fossil

evidence, a prior on the absolute rate of molecular evolu-

tion was used, following the procedure described in Hutt-

unen et al. (2008) and Aigoin et al. (2009). In the absence

of a substitution rate for ITS in bryophytes, we used a

normal distribution with a mean and standard deviation of

4.125 and 1.807e-3 substitutions per site per million years,

respectively, which corresponds to the average absolute

substitution rates of ITS across a wide range of annual

herbaceous species (Kay et al. 2006). However, we con-

sider that this rate is likely to overestimate substitution

rates in mosses, which are longer lived and rely for a large

part on asexual reproduction. This is particularly the case

in B. argenteum, which is thought to be sterile in Antarctica

(Ochyra et al. 2008). On average, the substitution rate of

18S rDNA, the neighbouring region of ITS, in mosses is
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suggested to be less than half that of vascular plants (Ste-

nøien 2008). It is likely that the substitution rate used here

may therefore be an overestimate of the true rate for this

species and therefore that divergence times derived from

this substitution rate may be significantly underestimated.

The Hasegawa, Kishino and Yano (HKY) model with

gamma distribution and invariant sites had the best Bayesian

information criterion (BIC) score for the ITS dataset using

jModelTest 2.1.4 (Darriba et al. 2012). A relaxed clock with

lognormal distribution was employed for the analysis.

Before running the final dating analysis, the performance of

five tree models (i.e. coalescent with constant size popula-

tion, coalescent under an extended Bayesian skyline

including the two linear and stepwise models, speciation

under a birth–death process and speciation under Yule pro-

cess) were compared using a model selection procedure

based on Bayesian factors calculated in TRACER v1.5

(Rambaut and Drummond 2009). Overall, the model using

the coalescent under a stepwise extended Bayesian skyline

model (Heled and Drummond 2008) performed best (data

not shown). Four independent Markov chain Monte Carlo

(MCMC) analyses were each run for 100,000,000 genera-

tions for every model. Parameter values were sampled every

10,000 generations, and convergence and acceptable mixing

of the samples were checked using the program TRACER

v1.5. After discarding the burn-in steps (2,000 trees), the runs

were combined to obtain an estimate of the posterior prob-

ability distributions of the dates of divergence.

To estimate ancestral areas, we used the maximum

likelihood dispersal–extinction–cladogenesis (DEC)

method (Ree et al. 2005; Ree and Smith 2008a) as

implemented in the software Lagrange build 20091004

(Ree and Smith 2008b) on the BEAST chronogram. Each

genotype was assigned to one or more of the seven geo-

graphic regions defined above. We conducted the analysis

in Lagrange based on an unconstrained model permitting

an equal probability of dispersal between all areas at any

time.

Results

The complete alignment had a total length of 928 bp after

the exclusion of the 5.8S rRNA gene. No further region

was excluded from the alignment. There were 328 sites

with gaps corresponding to 106 indels and 111 polymor-

phic sites. The alignment excluding outgroup sequences

had a total length of 844 bp. There were 173 sites with

gaps corresponding to 78 indels and 81 polymorphic sites

allowing for the identification of 77 haplotypes (Appendix

1 in Supplementary material 1). Haploid diversity unbiased

by population size was lowest in Antarctica (uh = 0.62) as

compared to other regions (0.79–0.94) (Table 1). The fre-

quency of endemic haplotypes exhibited the reverse trend,

reaching its highest value (x = 0.90) in Antarctica. None

of Tajima’s D statistics differed significantly from 0.

There was a significant difference in genotype frequency

among geographic regions (Global FST = 0.146,

P \ 0.0001). The global NST (0.267, P \ 0.0001) was

significantly higher than FST (P \ 0.0001) providing evi-

dence that, on average, the genotypes from the same region

were more closely related than the genotypes from differ-

ent regions. This geographic structure was largely due to

the significant genetic isolation of Antarctica. The phy-

logeographic signal between Antarctica and any of the

other six regions was consistently significant, whereas a

significant phylogeographic signal could not be detected

among any other pairs of regions (Table 2).

Accessions from Antarctica belonged to three clades

(Fig. 2). Clade I was mainly composed of Antarctic

genotypes, with the exception of one European genotype

and one common genotype shared between Antarctica,

Europe, Asia and America. Clade II was composed of

Antarctic, sub-Antarctic, American and Australasian

genotypes. Clade III was composed of Antarctic and

American genotypes. The Lagrange analysis indicated that

the most recent common ancestor of clade I, which may

have been distributed across Asia, Europe and America,

colonised Antarctica 4.36 Ma (Highest Posterior Density,

HPD, 1.79–14.72). In clades II and III, the earliest colo-

nisation of Antarctica dates back to 1.43 Ma (HPD

0.42–4.97) and 0.55 Ma (HPD 0.13–1.97), respectively,

from an ancestor most closely related to American popu-

lations. Potential dispersal events from Antarctica to other

regions are not excluded as genotypes in clade II located in

Australasia and the sub-Antarctic islands come from

ancestors distributed across Antarctica and America.

Discussion

Evidence for at least three distinct origins of B. argenteum

in Antarctica was found, with colonisation times ranging

Table 1 Sample size (N), number of genotypes (Na), haploid

diversity (h), haploid diversity unbiased by population (uh), frequency

of endemic haplotypes (x) and Tajima’s D (D) in seven geographic

regions of the worldwide distributed moss Bryum argenteum based on

the nuclear ITS locus

Continental area N Na h uh x D

Asia 20 17 0.89 0.94 0.71 -0.89 (0.19)

America 27 19 0.87 0.91 0.63 -1.27 (0.09)

Europe 56 22 0.77 0.79 0.68 -0.86 (0.21)

Australasia 7 6 0.80 0.93 0.83 0.35 (0.65)

Antarctica 25 10 0.59 0.62 0.90 -0.93 (0.28)

Africa 11 9 0.80 0.88 0.56 0.20 (0.61)

Sub-Antarctic islands 8 6 0.75 0.93 0.83 0.08 (0.36)
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between approximately 4.4 Ma (clade I), 1.4 Ma (clade II)

and 0.6 Ma (clade III). However, as mentioned above, the

substitution rate of Kay et al. (2006) is based on studies of

annual herbaceous species and is likely to be much higher

than in mosses. A study on relative substitution rates

amongst major plant groups showed that, on average, the

substitution rate of 18 s rDNA, the neighbouring region of

ITS, is more than twice as high in vascular plants compared

with mosses (Stenøien 2008). This suggests that the pre-

sence of B. argenteum in Antarctica may be considerably

more ancient than estimated here. The current study

therefore provides the first support for the long-term per-

sistence in situ of a bryophyte species in Antarctica, with

timescales in the order of millions of years. No evidence

supporting strict postPleistocene (i.e. recent) colonisation

(H1) was found in any of the lineages. Our results, how-

ever, do not exclude potential dispersal events from Ant-

arctica to other regions and future studies with a larger

sample size and obtained from more locations may identify

evidence for recent colonisation events.

In agreement with our finding of long-term persistence of

B. argenteum in Antarctica, a significant phylogeographical

signal was found in all pairwise comparisons between

Antarctica and each of the six other global regions, while no

such signal was identified amongst the latter. This indicates

that extant patterns of genetic diversity of Antarctic B. ar-

genteum populations are better explained in terms of in situ

diversification than recruitment of migrants from other

areas, resulting in the highest proportion of endemic hap-

lotypes as compared to other regions of the world. Such an

interpretation is consistent with recent developments in

biogeographical knowledge of much of the contemporary

terrestrial biota in Antarctica. Evidence for long-term his-

tory in situ has been reported in all major groups except the

bryophytes, with timescales ranging from mid-Pleistocene

(e.g. diatoms, rotifers, cladocerans) to Pliocene, Miocene

and Gondwana-breakup (e.g. springtails, chironomid mid-

ges, mites, copepods, microorganisms) (see Convey et al.

2008, 2009, and references therein; Vyverman et al. 2010).

McGaughran et al. (2010), in a comparative phylogeo-

graphic study of different springrail (Collembola) species in

Victoria Land and along the Scotia Arc and Antarctic Pen-

insula, identified analogous evidence of intraregional dif-

ferentiation and hence colonisation patterns on timescales

dating back to at least the earliest Pleistocene.

How and where bryophytes and other terrestrial biota

could have survived through glaciation events within

Antarctica is not yet well understood. The lowest ITS

haplotypic diversity within B. argenteum worldwide was

observed in Antarctica, as in the cosmopolitan moss

Ceratodon purpureus Hedw (Brid.) (Clarke et al. 2008,

2009). Although the hypothesis of lower mutation rates in

Antarctic B. argenteum populations cannot be ruled out

(Hills et al. 2010), such a low regional genetic diversity can

also be interpreted in terms of the sterile condition of B.

argenteum in Antarctica (Ochyra et al. 2008), either due to

the regional absence of one of the sexes in this dioicous

species, and/or inhibition of sex expression due to pre-

vailing cold and dry conditions (Longton 1988). Yet,

analyses of patterns of genetic diversity in Antarctic pop-

ulations of B. argenteum failed to evidence a significant

bottleneck. This observation does not support the hypoth-

esis of a substantial past decrease in population size and

points to the persistence of sufficiently large and numerous

populations of the species through time. In Antarctica,

areas of heated ground associated with geothermal activity,

where B. argenteum is known to occur (Convey et al.

2000), may be particularly relevant in considering the

locations of some potential refuge sites (Convey and Lewis

Smith 2006, Fraser et al. 2014). Although individually

ephemeral, the presence of geothermal habitats may have

extended over considerable time periods, as volcanism has

been widespread throughout the Tertiary in parts of the

northern Antarctic Peninsula and elsewhere in Antarctica

(Baker et al. 1975, Convey et al. 2000; Convey and Lewis

Smith 2006; Fraser et al. 2014). Therefore, geothermal

Table 2 Pairwise FST values (below diagonal) and NST values (above

diagonal) among seven geographic regions of the worldwide distrib-

uted moss Bryum argenteum based on the nuclear ITS locus. The

P values (in brackets) are associated to the null hypotheses that

FST = 0 and that FST = NST, respectively

Continental area Asia America Europe Australasia Antarctica Africa Sub-Antarctic

Asia – 0.012n.s. 0.157n.s. 0.124 (0.0358) 0.383 (0.0003)* 0.060n.s. 0.100n.s.

America 0.033 (0.0159)* – 0.135n.s. 0.049n.s. 0.479 (0.0001)* 0.027n.s. 0.062n.s.

Europe 0.105 (0.0004)* 0.120 (0.0001)* – 0.180n.s. 0.568 (0.0001)* 0.077n.s. 0.181n.s.

Australasia 0.034n.s. 0.025n.s. 0.122 (0.0085)* – 0.565 (0.0002)* 0.114n.s. 0.016n.s.

Antarctica 0.186 (0.0001)* 0.210 (0.0001)* 0.272 (0.0001)* 0.251 (0.0001)* – 0.549 (0.0002)* 0.498 (0.0047)*

Africa 0.056 (0.0082)* 0.044 (0.0334)* 0.107 (0.0031)* 0.066 (0.0466) 0.256 (0.0001)* – 0.073n.s.

Sub-Antarctic 0.096 (0.0007)* 0.088 (0.0046)* 0.156 (0.0015)* 0.077 (0.0468) 0.298 (0.0001)* 0.127 (0.0025)* –

n.s. indicates that the test is not significant (P [ 0.05)

* Indicates that the test remains significant after the correction of Benjamini and Yekutieli (2001) for multiple tests at the P \ 0.05 significance level
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habitats might have played a key role in the longer-term

regional persistence of species with rapid colonisation

capacities such as bryophytes, allowing survival through

periods of apparently greater environmental extremes than

are currently experienced (Convey and Lewis Smith 2006).

Conclusion

This study demonstrates for the first time in situ persistence

of bryophytes in Antarctica throughout previous glacial

cycles and contradicts the hypothesis of postglacial

recruitment from extra-regional locations. Although B.

argenteum, like other moss species, exhibits the lowest

levels of genetic diversity worldwide in Antarctica, ITS

variation is substantial within and among Antarctic popu-

lations, making it a highly suitable model for investigating

fine-scale patterns of genetic structure and diversity at

continental scale in order to reconstruct its biogeographic

history. In particular, detailed phylogeographic information

at the Antarctic scale would allow for testing Fraser’s et al.

(2014) hypothesis that refugia indeed correspond to areas

Fig. 2 Spatial and temporal dimensions of Bryum argenteum evolu-

tion. Chronogram of the fifty per cent majority rule consensus of the

trees sampled from the posterior probability distribution generated by

the BEAST analysis of ITS sequences of the B. argenteum genotypes

sampled worldwide. The maximum likelihood reconstruction of

geographical range evolution under the unconstrained dispersal–

extinction–cladogenesis (DEC) model (ln L = 214.9) implemented in

Lagrange is given in boxes at each node of interest. The geographical

areas defined for this study and each haplotype are provided. The two

series of reconstructions at each internal node indicate the ML

ancestral range estimate for the upper and lower branch connecting

that node, respectively. Boxes at terminal nodes indicate the

geographic areas occupied by the accessions belonging to each

haplotype. The vertical bars (I, II and III) indicate the clades with

Antarctic genotypes. Thicker branches indicate the support for the

Antarctic clades (PP [ 0.9). * indicates the support for clades with

PP [ 0.9)
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of high geothermal activity and contribute, together with

information from other terrestrial organisms (Terauds et al.

2012), to enhancing the identification of bioregions that are

not fully represented in the current Antarctic Specially

Protected Area network.
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