
CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-

Free Regions

1 Universidad de Murcia

Murcia, Spain

2Universitat Politècnica de València

Valencia, Spain

Sawan Singh1, Josue Feliu2, Manuel E. Acacio1, Alexandra Jimborean1, Alberto Ros1

32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

Monday, October 23, 2023

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

2

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

➢ LQ keeps all in-flight loads in order and supports priority searches

3

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

➢ LQ keeps all in-flight loads in order and supports priority searches

➢ LQ size has been increasing

0.0

0.5

1.0

1.5

2.0

0

50

100

150

200

LQ
 s

ea
rc

h
 p

o
rt

s

LQ
 s

iz
e

LQ size (left y-axis)
LQ search ports (right y-axis)

4

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

➢ LQ keeps all in-flight loads in order and supports priority searches

➢ LQ size has been increasing

➢ Energy consumption of the LQ is also growing

0.0

0.5

1.0

1.5

2.0

0

50

100

150

200

LQ
 s

ea
rc

h
 p

o
rt

s

LQ
 s

iz
e

LQ size (left y-axis)
LQ search ports (right y-axis)

0

5

10

15

20

0.00

0.01

0.02

0.03

0.04

Le
ak

ag
e

 p
o

w
er

 (
m

W
)

D
yn

am
ic

 e
n

e
rg

y
(n

J)

Dynamic energy (left y-axis)
Leakage power (right y-axis)

5

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

➢ LQ keeps all in-flight loads in order and supports priority searches

➢ LQ size has been increasing

➢ Energy consumption of the LQ is also growing

➢ Simultaneous multithreading (SMT) intensifies the pressure on LQ

as it requires additional LQ searches

0.0

0.5

1.0

1.5

2.0

0

50

100

150

200

LQ
 s

ea
rc

h
 p

o
rt

s

LQ
 s

iz
e

LQ size (left y-axis)
LQ search ports (right y-axis)

0

5

10

15

20

0.00

0.01

0.02

0.03

0.04

Le
ak

ag
e

 p
o

w
er

 (
m

W
)

D
yn

am
ic

 e
n

e
rg

y
(n

J)

Dynamic energy (left y-axis)
Leakage power (right y-axis)

6

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

We propose CELLO

➢ A software-hardware co-design for SMT processors with TSO consistency model

7

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

We propose CELLO

➢ A software-hardware co-design for SMT processors with TSO consistency model

➢ The compiler detects memory operations in DRF regions

8

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

We propose CELLO

➢ A software-hardware co-design for SMT processors with TSO consistency model

➢ The compiler detects memory operations in DRF regions

➢ The hardware optimizes their execution by safely skipping the LQ searches

without violating the TSO consistency model

9

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

We propose CELLO

➢ A software-hardware co-design for SMT processors with TSO consistency model

➢ The compiler detects memory operations in DRF regions

➢ The hardware optimizes their execution by safely skipping the LQ searches

without violating the TSO consistency model

➢ CELLO reduces LQ searches by half

10

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Outline

● Overview

● Background

● CELLO

● Evaluation

● Conclusion

11

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

12

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st ?

ld x st ?

Younger

Older

ld x

st ?

13

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st ?

ld x st ?

➢ When loads execute the target address of older stores may be unknown

1. ld x executes

Younger

Older

ld x

st ?

14

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st ?

ld x st ?

➢ When loads execute the target address of older stores may be unknown

➢ Loads executing in the presense of an older unresolved stores are dependency-speculative (D-

speculative)

1. ld x executes

Younger

Older

ld x

st ?

15

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st x

ld x st x

➢ When loads execute the target address of older stores may be unknown

➢ Loads executing in the presense of an older unresolved stores are dependency-speculative (D-

speculative)

1. ld x executes

2. st resolves its address

➢ Stores search the LQ to make their presence known to younger loads that might have executed D-

speculatively

LQ search

Younger

Older

ld x

st x

16

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st x

ld x st x

➢ When loads execute the target address of older stores may be unknown

➢ Loads executing in the presense of an older unresolved stores are dependency-speculative (D-

speculative)

1. ld x executes

2. st resolves its address

➢ Stores search the LQ to make their presence known to younger loads that might have executed D-

speculatively

➢ If found the load and the subsequent instructions are squashed and re-executed

LQ search

Younger

Older

ld x

st x

17

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
Sequential semantics

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

st x

ld x st x

➢ When loads execute the target address of older stores may be unknown

➢ Loads executing in the presense of an older unresolved stores are dependency-speculative (D-

speculative)

1. ld x executes

2. st resolves its address

➢ Stores search the LQ to make their presence known to younger loads that might have executed D-

speculatively

➢ If found the load and the subsequent instructions are squashed and re-executed

➢ LQ search by stores is 51% of total LQ searches

LQ search

Younger

Older

ld x

st x

18

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld y ld x

➢ TSO respects load-load ordering

ld yOlder

Younger

ld x

ld y

19

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

20

ld y

ld yOlder

Younger

ld y(executed)

ld x

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

➢ These speculative loads are called memory-speculative (M-Speculative)

21

ld y

ld yOlder

Younger

ld y(executed)

ld x

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

➢ These speculative loads are called memory-speculative (M-Speculative)

➢ Cache invalidations can expose speculative loads in another core

22

ld y

ld yOlder

Younger

ld y(executed)

ld x

Cache Invalidation

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

➢ These speculative loads are called memory-speculative (M-Speculative)

➢ Cache invalidations can expose speculative loads in another core

➢ Cache evictions are also treated as invalidations as once evicted from cache it no longer can receive an

invalidation

23

ld y

ld yOlder

Younger

ld y(executed)

ld x

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

➢ These speculative loads are called memory-speculative (M-Speculative)

➢ Cache invalidations can expose speculative loads in another core

➢ Cache evictions are also treated as invalidations as once evicted from cache it no longer can receive an

invalidation

➢ The LQ is searched by cache invalidations and evictions, which is about 3% in evaluated benchmarks

24

ld y

ld yOlder

Younger

ld y(executed)

ld x

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in SMT]

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

➢ Structures in blue are partitioned between SMT threads

➢ Multiple SMT threads can run in a single SMT core

LQ

SQ/SB

ROB

25

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in SMT]

➢ No invalidations to check load-load ordering as now it executes in a single SMT core

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

Older

Younger

ld x

ld y

LQ

SQ/SB

ROB

Older

Younger

st y

st x

Th0 Th1

26

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in SMT]

➢ No invalidations to check load-load ordering as now it executes in a single SMT core

➢ Stores search the LQ of other threads when writing to the cache

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

LQ search when store writes

LQ

SQ/SB

ROB

27

Older

Younger

ld x

ld y

Older

Younger

st y

st x

Th0 Th1

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in SMT]

➢ No invalidations to check load-load ordering as now it executes in a single SMT core

➢ Stores search the LQ of other threads when writing to the cache

➢ The additional search required in SMT processor to maintain load-load ordering contribute to 46% of

total LQ searches

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

LQ search when store writes

LQ

SQ/SB

ROB

28

Older

Younger

ld x

ld y

Older

Younger

st y

st x

Th0 Th1

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [All LQ searches in SMT]

In the SMT processor, the LQ is searched at:-

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

1

2

3
LQ

SQ/SB

ROB

29

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [All LQ searches in SMT]

In the SMT processor, the LQ is searched at:-

1. When the store resolves the address at execute stage (51%)

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

1

2

3
LQ

SQ/SB

ROB

30

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [All LQ searches in SMT]

In the SMT processor, the LQ is searched at:-

1. When the store resolves the address at execute stage (51%)

2. On cache invalidations and cache evictions (3%)

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

1

2

3
LQ

SQ/SB

ROB

31

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [All LQ searches in SMT]

In the SMT processor, the LQ is searched at:-

1. When the store resolves the address at execute stage (51%)

2. On cache invalidations and cache evictions (3%)

3. When stores write to cache (46%)

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

1

2

3
LQ

SQ/SB

ROB

32

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Outline

● Overview

● Background

● CELLO

● Evaluation

● Conclusion

33

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

34

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

35

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

➢ Compiler information is transmitted to the hardware by dedicated instruction

36

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

➢ Compiler information is transmitted to the hardware by dedicated instruction

➢ Based on the DRF information, CELLO,

➢ Filters the LQ searches in the DRF region.

➢ Facilitates early load exit from LQ.

37

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

38

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

DRF (runs sequentially)

No conflicts possible as

they runs sequentially

39

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

DRF (runs concurrently)

DRF (runs concurrently)

Conflicts not possible

because they operate on

different dataDRF (runs sequentially)

No conflicts possible as

they runs sequentially

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

40

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

DRF (runs concurrently)

DRF (runs concurrently)

Conflicts not possible

because they operate on

different dataDRF (runs sequentially)

No conflicts possible as

they runs sequentially

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

41

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

DRF (runs concurrently)

DRF (runs concurrently)

Conflicts not possible

because they operate on

different dataDRF (runs sequentially)

No conflicts possible as

they runs sequentially

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

42

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

DRF (runs concurrently)

DRF (runs concurrently)

Conflicts not possible

because they operate on

different dataDRF (runs sequentially)

No conflicts possible as

they runs sequentially

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

2. No LQ search is required to maintain load-load ordering in a DRF region

43

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

DRF (runs concurrently)

DRF (runs concurrently)

Conflicts not possible

because they operate on

different dataDRF (runs sequentially)

No conflicts possible as

they runs sequentially

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

Sync

Sync

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

2. No LQ search is required to maintain load-load ordering in a DRF region

➢ All non-DRF regions are sync regions and load-load ordering should be respected in TSO

44

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

DRF (runs concurrently)

DRF (runs concurrently)

DRF (runs sequentially)

Sync

Sync

setDRF 0

setDRF 1

setDRF 0

setDRF 1

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

2. No LQ search is required to maintain load-load ordering in a DRF region

➢ All non-DRF regions are sync regions and load-load ordering should be respected in TSO

➢ CELLO delineates DRF and sync regions by setDRF instruction

45

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

DRF (runs concurrently)

DRF (runs concurrently)

DRF (runs sequentially)

Sync

Sync

setDRF 0

setDRF 1

setDRF 0

setDRF 1

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

2. No LQ search is required to maintain load-load ordering in a DRF region

➢ All non-DRF regions are sync regions and load-load ordering should be respected in TSO

➢ CELLO delineates DRF and sync regions by setDRF instruction

setDRF 1 : Start of DRF region

46

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];

unlock(mtx);

c[i] = c[i] + 5;

}

DRF (runs concurrently)

DRF (runs concurrently)

DRF (runs sequentially)

Sync

Sync

setDRF 0

setDRF 1

setDRF 0

setDRF 1

➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative

2. No LQ search is required to maintain load-load ordering in a DRF region

➢ All non-DRF regions are sync regions and load-load ordering should be respected in TSO

➢ CELLO delineates DRF and sync regions by setDRF instruction

setDRF 1 : Start of DRF region

setDRF 0 : End of DRF region

47

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

48

Older

Younger

ld x

ld y

Older

Younger

st a

st b

Th0 Th1

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Compiler]

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

DRF

✘

49

Older

Younger

ld x

ld y

Older

Younger

st a

st b

Th0 Th1

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

50

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

51

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

52

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

53

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region

Flag is

updated

Region flag

Th0 Th1

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

54

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

Th0 Th1

num-sync

Th0 Th1

Region

Flag is

updated

+ -
LDLD

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

55

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

Th0 Th1

num-sync

Th0 Th1

Region

Flag is

updated

+ -
LDLD

Th0: setDRF 0

Th1: setDRF 1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

56

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

0 1

num-sync

0 0

Region

Flag is

updated

+ -
LDLD

Th0: setDRF 0

Th1: setDRF 1

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

57

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

0 1

num-sync

0 0

Region

Flag is

updated

+ -
LDLD

Th0: ld x

Th1: st y

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

58

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M 1 M M M

0 M M M M M M M

setDRF is

fetched

Region flag

0 1

num-sync

1 0

Region

Flag is

updated

+ -
LDLD

Th0: ld x

Th1: st y

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF

region

59

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

Th0 Th1

num-sync

Th0 Th1

Region

Flag is

updated

+ -

Invalidations

Store Writes

Evictions

LDLD

60

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

1 1 1 1 1 1 1

setDRF is

fetched

Region flag

Th0 Th1

num-sync

0 0

Region

Flag is

updated

+ -

Store Writes

Store Writes

LD

Invalidations

Store Writes

Evictions

1

All entries in the LQ are DRF

LD

✘

✘

✘

61

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is

fetched

Region flag

Th0 Th1

num-sync

Th0 Th1

Region

Flag is

updated

+ -

Invalidations

Store Writes

Evictions

DRF store writes

LD

✘

62

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design, early removal of loads]

LQ

M M M M M M M 1

Tail Head

LQ head is safe to remove when

➢ LQ head becomes non M-Spec

➢ LQ head becomes non D-Spec

63

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design, early removal of loads]

LQ

M M M M M M M 1

Tail Head

64

LQ head is safe to remove when

➢ LQ head becomes non M-Spec (DRF Loads are M-Speculative by default)

➢ LQ head becomes non D-Spec

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Recap]

➔ CELLO provides a simple design to filter M-spec LQ searches in SMT

processors

➔ CELLO allows the DRF load to be removed early from the LQ head if all

older stores have resolved the address and already searched the LQ

65

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Outline

● Overview

● Background

● CELLO

● Evaluation

● Conclusion

66

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation

➔ Detailed In-house out-of-order SMT processor model

➔ Uses Sniper as front end and GEMS for memory model

➔ Standard invalidation-based directory protocol using GARNET

➔ TSO like consistency

➔ Intel Alder Lake micro-architecture

➔ CACTI-P is used to model energy consumption

➔ Splash-3, PARSEC 3.0, and six fine-grain synchronization-intensive

applications are used as benchmarks

67

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ Searches]

68

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ Searches]

69

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ Searches]

70

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ Searches]

71

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ Searches]

➔ M-speculative LQ searches are almost

eliminated

➔ Overall, 47% of LQ searches are filtered by

CELLO

72

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [Execution time]

73

https://docs.google.com/spreadsheets/d/1gj51f0_W_yqowTDCUHoiD41NPUkl4ULw9HbnNmvFh7g/edit

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [Execution time]

➔ LQ search filtering helps reduce the LQ search port contention

➔ Removing loads early helps in some applications

➔ CELLO provide a speed up of 2.8% on average

74

https://docs.google.com/spreadsheets/d/1gj51f0_W_yqowTDCUHoiD41NPUkl4ULw9HbnNmvFh7g/edit

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ energy]

➔ Searches account for 65% of LQ energy consumption

➔ As CELLO filter most of the M-sepc search, the reduction in LQ energy expenditure is about 33%

75

https://docs.google.com/spreadsheets/d/1gj51f0_W_yqowTDCUHoiD41NPUkl4ULw9HbnNmvFh7g/edit

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [LQ energy]

➔ Searches account for 65% of LQ energy consumption

➔ As CELLO filter most of the M-sepc search, the reduction in LQ energy expenditure is about 33%

76

https://docs.google.com/spreadsheets/d/1gj51f0_W_yqowTDCUHoiD41NPUkl4ULw9HbnNmvFh7g/edit

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [Sensitivity analysis]

77

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Evaluation [Sensitivity analysis]

Key observations:-

➔ Smaller LQ benefits from low energy

consumption

➔ CELLO offers a design space with a

smaller LQ size without compromising

the performance when compared to the

baseline without CELLO with 192 entries

LQ

➔ CELLO managed to reduce the LQ size

from 192 to 80 while providing the same

performance

78

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Conclusion

➔ The compiler can help optimize hardware

79

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches

80

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches

➔ CELLO can

1. Avoid LQ searches by 47%

2. Provide a speedup of 2.8% (up to 18.6%)

3. Reduce the LQ energy consumption by 33%

81

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches

➔ CELLO can

1. Avoid LQ searches by 47%

2. Provide a speedup of 2.8% (up to 18.6%)

3. Reduce the LQ energy consumption by 33%

➔ CELLO provides an interesting design space by allowing to reduction

the LQ size from 192 to 80 without any performance loss.

82

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-

Free Regions

Sawan Singh, Josue Feliu, Manuel E. Acacio, Alexandra Jimborean, Alberto Ros

singh.sawan@um.es

32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

Thank you for your attention!

ECHO, ERC Consolidator Grant (No 819134)

This presentation belong to the authors. No distribution is allowed without the authors' permission.

CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Backup Slides

84

	Slide 1: CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Overview
	Slide 8: Overview
	Slide 9: Overview
	Slide 10: Overview
	Slide 11: Outline
	Slide 12: Background [LQ searches in single thread]
	Slide 13: Background [LQ searches in single thread]
	Slide 14: Background [LQ searches in single thread]
	Slide 15: Background [LQ searches in single thread]
	Slide 16: Background [LQ searches in single thread]
	Slide 17: Background [LQ searches in single thread]
	Slide 18: Background [LQ searches in single thread]
	Slide 19: Background [LQ searches in single thread]
	Slide 20: Background [LQ searches in single thread]
	Slide 21: Background [LQ searches in single thread]
	Slide 22: Background [LQ searches in single thread]
	Slide 23: Background [LQ searches in single thread]
	Slide 24: Background [LQ searches in single thread]
	Slide 25: Background [LQ searches in SMT]
	Slide 26: Background [LQ searches in SMT]
	Slide 27: Background [LQ searches in SMT]
	Slide 28: Background [LQ searches in SMT]
	Slide 29: Background [All LQ searches in SMT]
	Slide 30: Background [All LQ searches in SMT]
	Slide 31: Background [All LQ searches in SMT]
	Slide 32: Background [All LQ searches in SMT]
	Slide 33: Outline
	Slide 34: CELLO [Design Overview]
	Slide 35: CELLO [Design Overview]
	Slide 36: CELLO [Design Overview]
	Slide 37: CELLO [Design Overview]
	Slide 38: CELLO [Compiler]
	Slide 39: CELLO [Compiler]
	Slide 40: CELLO [Compiler]
	Slide 41: CELLO [Compiler]
	Slide 42: CELLO [Compiler]
	Slide 43: CELLO [Compiler]
	Slide 44: CELLO [Compiler]
	Slide 45: CELLO [Compiler]
	Slide 46: CELLO [Compiler]
	Slide 47: CELLO [Compiler]
	Slide 48: CELLO [Compiler]
	Slide 49: CELLO [Compiler]
	Slide 50: CELLO [u-Arch design]
	Slide 51: CELLO [u-Arch design]
	Slide 52: CELLO [u-Arch design]
	Slide 53: CELLO [u-Arch design]
	Slide 54: CELLO [u-Arch design]
	Slide 55: CELLO [u-Arch design]
	Slide 56: CELLO [u-Arch design]
	Slide 57: CELLO [u-Arch design]
	Slide 58: CELLO [u-Arch design]
	Slide 59: CELLO [u-Arch design]
	Slide 60: CELLO [u-Arch design]
	Slide 61: CELLO [u-Arch design]
	Slide 62: CELLO [u-Arch design]
	Slide 63: CELLO [u-Arch design, early removal of loads]
	Slide 64: CELLO [u-Arch design, early removal of loads]
	Slide 65: CELLO [Recap]
	Slide 66: Outline
	Slide 67: Evaluation
	Slide 68: Evaluation [LQ Searches]
	Slide 69: Evaluation [LQ Searches]
	Slide 70: Evaluation [LQ Searches]
	Slide 71: Evaluation [LQ Searches]
	Slide 72: Evaluation [LQ Searches]
	Slide 73: Evaluation [Execution time]
	Slide 74: Evaluation [Execution time]
	Slide 75: Evaluation [LQ energy]
	Slide 76: Evaluation [LQ energy]
	Slide 77: Evaluation [Sensitivity analysis]
	Slide 78: Evaluation [Sensitivity analysis]
	Slide 79: Conclusion
	Slide 80: Conclusion
	Slide 81: Conclusion
	Slide 82: Conclusion
	Slide 83: CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions
	Slide 84: Backup Slides

