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CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

➢ Load queue (LQ) is one of the most critical structures in a processor

➢ LQ keeps all in-flight loads in order and supports priority searches

➢ LQ size has been increasing

➢ Energy consumption of the LQ is also growing

➢ Simultaneous multithreading (SMT) intensifies the pressure on LQ 

as it requires additional LQ searches
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CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Overview

We propose CELLO

➢ A software-hardware co-design for SMT processors with TSO consistency model

➢ The compiler detects memory operations in DRF regions

➢ The hardware optimizes their execution by safely skipping the LQ searches 

without violating the TSO consistency model

➢ CELLO reduces LQ searches by half
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Outline

● Overview
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● Conclusion
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Background [LQ searches in single thread]
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Background [LQ searches in single thread]
Sequential semantics
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➢ When loads execute the target address of older stores may be unknown

➢ Loads executing in the presense of an older unresolved stores are dependency-speculative (D-

speculative)

1. ld x executes

2. st resolves its address

➢ Stores search the LQ to make their presence known to younger loads that might have executed D-

speculatively 

➢ If found the load and the subsequent instructions are squashed and re-executed

➢ LQ search by stores is 51% of total LQ searches
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Background [LQ searches in single thread]
load-load ordering

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

ld x

ld x

➢ TSO respects load-load ordering

➢ The younger executed load becomes speculative when an older load has not yet performed

➢ These speculative loads are called memory-speculative (M-Speculative)

➢ Cache invalidations can expose speculative loads in another core

➢ Cache evictions are also treated as invalidations as once evicted from cache it no longer can receive an 

invalidation

➢ The LQ is searched by cache invalidations and evictions, which is about 3% in evaluated benchmarks

24

ld y

ld yOlder

Younger

ld y(executed)

ld x



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Background [LQ searches in SMT]
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Background [LQ searches in SMT]

➢ No invalidations to check load-load ordering as now it executes in a single SMT core
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Background [LQ searches in SMT]

➢ No invalidations to check load-load ordering as now it executes in a single SMT core

➢ Stores search the LQ of other threads when writing to the cache

➢ The additional search required in SMT processor to maintain load-load ordering contribute to 46% of 

total LQ searches
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In the SMT processor, the LQ is searched at:-

1. When the store resolves the address at execute stage (51%)

2. On cache invalidations and cache evictions (3%)

3. When stores write to cache (46%)

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

Data Cache

Execute

1

2

3
LQ

SQ/SB

ROB

32



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

Outline

● Overview

● Background

● CELLO

● Evaluation

● Conclusion

33



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design  Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

34



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design  Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

35



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design  Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

➢ Compiler information is transmitted to the hardware by dedicated instruction

36



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [Design  Overview]

➢ A software-hardware co-designed approach

➢ Leverages SC-for-DRF consistency model

➢ CELLO compiler classifies memory access within sync and DRF

➢ Compiler information is transmitted to the hardware by dedicated instruction

➢ Based on the DRF information, CELLO,

➢ Filters the LQ searches in the DRF region.

➢ Facilitates early load exit from LQ.
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CELLO [Compiler]
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for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;

lock(mtx);

counter ++;

b += a[i];
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c[i] = c[i] + 5;

}
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CELLO [Compiler]

# pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = a[i] + 10;
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➢ In DRF regions no thread/core can perform concurrently to the same memory location if one of them is write

1. Loads in DRF regions can perform OoO without breaking TSO guarantees, they are non M-Speculative 

2. No LQ search is required to maintain load-load ordering in a DRF region

➢ All non-DRF regions are sync regions and load-load ordering should be respected in TSO

➢ CELLO delineates DRF and sync regions by setDRF instruction

setDRF 1 : Start of DRF region

setDRF 0 : End of DRF region
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CELLO [Compiler]

Fetch Decode Rename

Reservation stations

Dispatch Memory Commit Store Write

LQ

SQ/SB

ROB

Data Cache

Execute

DRF

✘
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

50



CELLO: Compiler-Assisted Efficient Load-Load Ordering in Data-Race-Free Regions @ PACT’23

CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region 

Flag is 

updated

Region flag

Th0  Th1

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 

region
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region flag

Th0  Th1

num-sync

Th0  Th1

Region 

Flag is 

updated

+ -
LDLD

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 

region
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region flag

Th0  Th1

num-sync

Th0  Th1

Region 

Flag is 

updated

+ -
LDLD

Th0: setDRF 0

Th1: setDRF 1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 

region
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region flag
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num-sync
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Region 

Flag is 

updated

+ -
LDLD

Th0: setDRF 0

Th1: setDRF 1

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 

region
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region flag

0       1

num-sync

0      0

Region 

Flag is 

updated

+ -
LDLD

Th0: ld x

Th1: st y

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 

region
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M 1 M M M

0 M M M M M M M

setDRF is 
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Region flag

0       1

num-sync

1      0

Region 

Flag is 

updated

+ -
LDLD

Th0: ld x

Th1: st y

Th0 Th1

Th0 Th1

num-sync flag

➢ 1 bit per each thread

➢ Count total number of sync entries in LQ

➢ num-sync = 0 : all entries in LQ are DRF

Mode bit (M)

➢ 1 bit per entry in SQ/SB and LQ

➢ Keeps DRF info per entry

➢ M = 1 : DRF entry

➢ M = 0 : Non-DRF (sync) entry

Region flag

➢ 1 bit per each thread

➢ Keeps info if the thread is in DRF or non-DRF 
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

1 1 1 1 1 1 1

setDRF is 

fetched

Region flag

Th0  Th1

num-sync

0        0

Region 

Flag is 

updated
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Store Writes

Store Writes
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Store Writes
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All entries in the LQ are DRF
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✘

✘

✘
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CELLO [u-Arch design]

Fetch Decode Rename Allocate Issue Execute Execute Execute Memory Commit

Th0 Th1LQ

Th0 Th1SQ/SB

M M M M M M M M

M M M M M M M M

setDRF is 

fetched

Region flag
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CELLO [u-Arch design, early removal of loads]

LQ

M M M M M M M 1

Tail Head

LQ head is safe to remove when

➢ LQ head becomes non M-Spec

➢ LQ head becomes non D-Spec
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CELLO [u-Arch design, early removal of loads]

LQ

M M M M M M M 1

Tail Head
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LQ head is safe to remove when

➢ LQ head becomes non M-Spec (DRF Loads are M-Speculative by default)

➢ LQ head becomes non D-Spec
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CELLO [Recap]

➔ CELLO provides a simple design to filter M-spec LQ searches in SMT 

processors

➔ CELLO allows the DRF load to be removed early from the LQ head if all 

older stores have resolved the address and already searched the LQ
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Outline

● Overview

● Background

● CELLO

● Evaluation

● Conclusion
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Evaluation

➔ Detailed In-house out-of-order SMT processor model

➔ Uses Sniper as front end and GEMS for memory model

➔ Standard invalidation-based directory protocol using GARNET

➔ TSO like consistency

➔ Intel Alder Lake micro-architecture

➔ CACTI-P is used to model energy consumption

➔ Splash-3, PARSEC 3.0, and six fine-grain synchronization-intensive 

applications are used as benchmarks
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Evaluation [LQ Searches]
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Evaluation [LQ Searches]
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Evaluation [LQ Searches]
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Evaluation [LQ Searches]
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Evaluation [LQ Searches]

➔ M-speculative LQ searches are almost 

eliminated

➔ Overall, 47% of LQ searches are filtered by 

CELLO
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Evaluation [Execution time]
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Evaluation [Execution time]

➔ LQ search filtering helps reduce the LQ search port contention 

➔ Removing loads early helps in some applications 

➔ CELLO provide a speed up of 2.8% on average
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Evaluation [LQ energy]

➔ Searches account for 65% of LQ energy consumption

➔ As CELLO filter most of the M-sepc search, the reduction in LQ energy expenditure is about 33%
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Evaluation [LQ energy]

➔ Searches account for 65% of LQ energy consumption

➔ As CELLO filter most of the M-sepc search, the reduction in LQ energy expenditure is about 33%
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Evaluation [Sensitivity analysis]
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Evaluation [Sensitivity analysis]

Key observations:-

➔ Smaller LQ benefits from low energy 

consumption

➔ CELLO offers a design space with a 

smaller LQ size without compromising 

the performance when compared to the 

baseline without CELLO with 192 entries 

LQ

➔ CELLO managed to reduce the LQ size 

from 192 to 80 while providing the same 

performance
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Conclusion

➔ The compiler can help optimize hardware
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Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches
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Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches

➔ CELLO can

1. Avoid LQ searches by 47%

2. Provide a speedup of 2.8% (up to 18.6%)

3. Reduce the LQ energy consumption by 33%
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Conclusion

➔ The compiler can help optimize hardware

➔ SMT suffers from extensive LQ searches

➔ CELLO can

1. Avoid LQ searches by 47%

2. Provide a speedup of 2.8% (up to 18.6%)

3. Reduce the LQ energy consumption by 33%

➔ CELLO provides an interesting design space by allowing to reduction 

the LQ size from 192 to 80 without any performance loss.
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