

ALTERNATE PATH μ -OP CACHE PREFETCHING

Sawan Singh¹ Arthur Perais² Alexandra Jimborean¹ Alberto Ros¹

¹Computer Engineering Department University of Murcia, Spain ²TIMA, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France

ISCA'51, Session 10A, July 3, 2024

 $\stackrel{\text{COMPUTER OX PARALLEL ARCHITECTURE OX SYSTEMS}}{\rightarrow} \mu\text{-op Cache}$

Holds recently decoded μ-ops

$\stackrel{\square}{ o}$ μ -op Cache

- ullet Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

Alternate Path µ-op Cache Prefetching @ISCA'51

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache

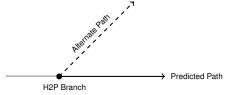
- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - Identify hard-to-predict branches

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - Identify hard-to-predict branches
 - Prefetch μ -ops from alternate path of the hard-to-predict branch

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

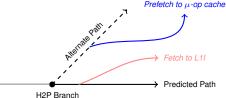

Alternate Path u-op Cache Prefetching @ISCA'51

$\stackrel{\longrightarrow}{\rightarrow} \mu$ -op Cache

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - Identify hard-to-predict branches
 - Prefetch μ -ops from alternate path of the hard-to-predict branch

¹ Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

Alternate Path u-op Cache Prefetching @ISCA'51



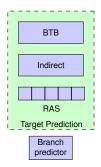
μ -op Cache

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoder
- Current μ-op caches are severely overwhelmed by server workloads
 - ullet Only provide 0.87% improvement over no μ -op cache
 - Ideal μ -op cache can provide 10.82% improvement
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - Identify hard-to-predict branches
 - Prefetch μ-ops from alternate path of the hard-to-predict branch

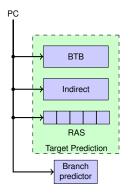
 Prefetch to μ-op cache

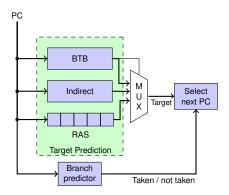
Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

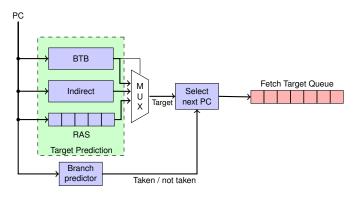
Alternate Path u-op Cache Prefetching @ISCA'51

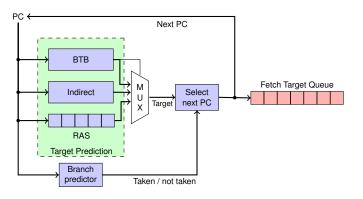

OUTLINE

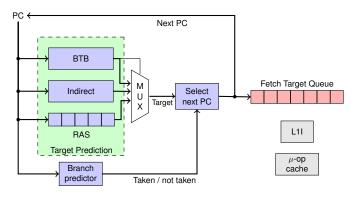
- Overview
- Background & Motivation
- UCP
- Methodology & Results
- Conclusions

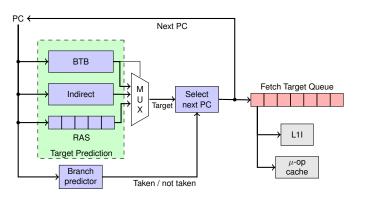


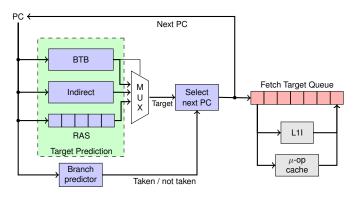


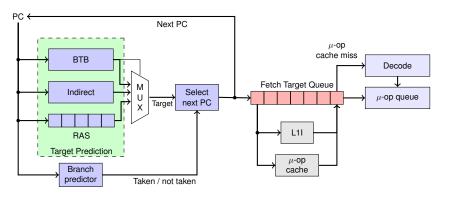


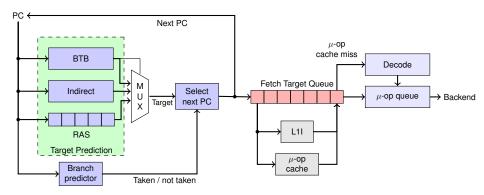




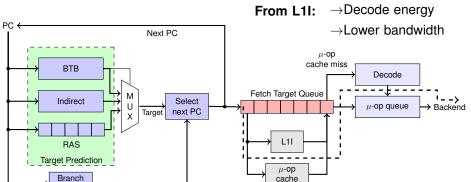








predictor


Taken / not taken

BACKGROUND & MOTIVATION

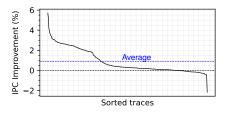
PROCESSOR FRONT-END

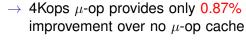
ightarrowDecode latency

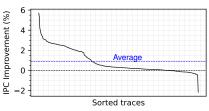

BACKGROUND & MOTIVATION

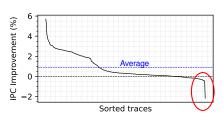
PROCESSOR FRONT-END

→Decode latency

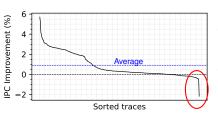

From μ -op cache: \rightarrow Decode energy


BACKGROUND & MOTIVATION



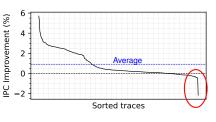

BACKGROUND & MOTIVATION

BACKGROUND & MOTIVATION

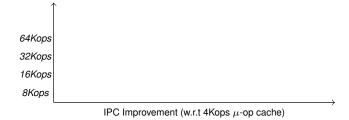

- \rightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown

BACKGROUND & MOTIVATION

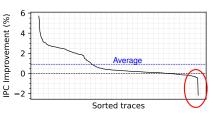
PERFORMANCE OF μ -OPS CACHE WITH SERVER WORKLOADS



- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help

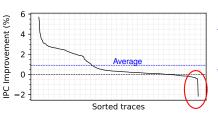

IPC Improvement (w.r.t 4Kops μ -op cache)

BACKGROUND & MOTIVATION



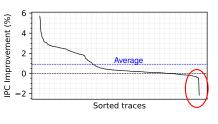
- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help

BACKGROUND & MOTIVATION

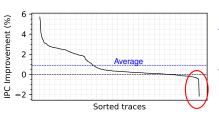


- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help

BACKGROUND & MOTIVATION

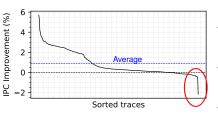

- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help

BACKGROUND & MOTIVATION



- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help

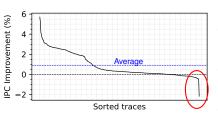
BACKGROUND & MOTIVATION


- \rightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- \rightarrow 19.3% of traces show a slowdown
- Increasing size of μ -op cache does not help

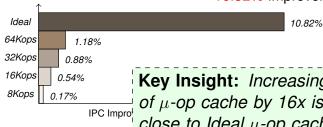
BACKGROUND & MOTIVATION

PERFORMANCE OF μ -OPS CACHE WITH SERVER WORKLOADS

- ightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- → 19.3% of traces show a slowdown
- ightarrow Increasing size of μ -op cache does not help
- ightarrow Ideal μ -op cache can provide 10.82% improvement



IPC Improvement (w.r.t 4Kops μ -op cache)



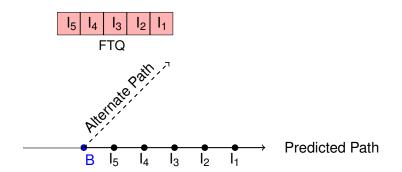
BACKGROUND & MOTIVATION

Performance of μ -ops cache with server workloads

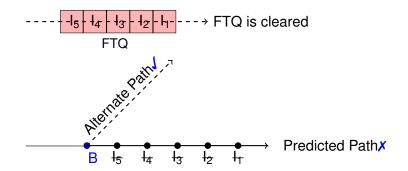
- \rightarrow 4Kops μ -op provides only 0.87% improvement over no μ -op cache
- \rightarrow 19.3% of traces show a slowdown
- \rightarrow Increasing size of μ -op cache does not help
 - Ideal μ -op cache can provide 10.82% improvement

Key Insight: *Increasing the size* of μ -op cache by 16x is still not close to Ideal μ-op cache

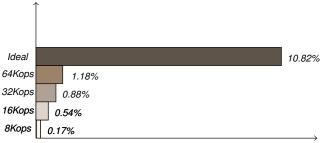
→ FTQ is unable to hide the L1I miss latency on branch misprediction



- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction

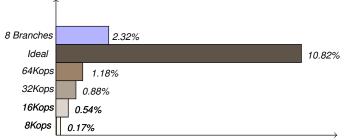

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction



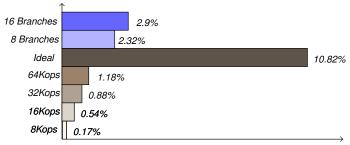
- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?



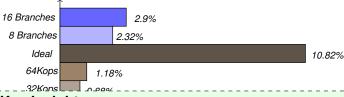
IPC Improvement (w.r.t 4Kops μ -op cache)

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?



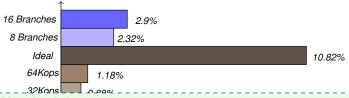
IPC Improvement (w.r.t 4Kops μ -op cache)

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?



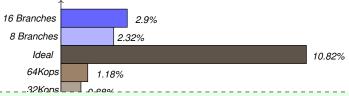
IPC Improvement (w.r.t 4Kops μ -op cache)

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?



Key Insight:

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?


Key Insight:

1. FTQ is unable to hide the fetch latency on branch misprediction

- → FTQ is unable to hide the L1I miss latency on branch misprediction
 - FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

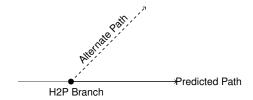
Key Insight:

- **1.** FTQ is unable to hide the fetch latency on branch misprediction
- **2.** Focusing on few but critical instructions can provide significant performance benefits

OUTLINE

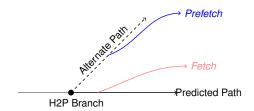
- Overview
- Background & Motivation
- UCP
- Methodology & Results
- Conclusions

UCP UCP: OVERVIEW


Identifies a hard-to-predict conditional branch (H2P)

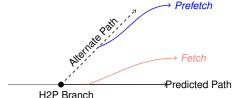
UCP UCP: OVERVIEW

- ① Identifies a hard-to-predict conditional branch (H2P)
- On a H2P begin generating addresses on alternate path (alternate path)



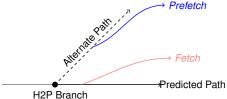
UCP: OVERVIEW

- ① Identifies a hard-to-predict conditional branch (H2P)
- On a H2P begin generating addresses on alternate path (alternate path)
- 3 Generated addresses on alternate path are prefetched in parallel to predicted path fetch



UCP UCP: OVERVIEW

- ① Identifies a hard-to-predict conditional branch (H2P)
- On a H2P begin generating addresses on alternate path (alternate path)
- 3 Generated addresses on alternate path are prefetched in parallel to predicted path fetch
- Φ Prefetched instructions are decoded and inserted in the μ -op cache

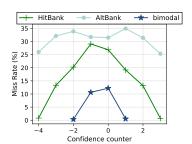


UCP UCP: OVERVIEW

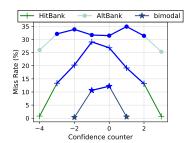
- Identifies a hard-to-predict conditional branch (H2P)
- On a H2P begin generating addresses on alternate path (alternate path)
- Generated addresses on alternate path are prefetched in parallel to predicted path fetch
- Φ Prefetched instructions are decoded and inserted in the μ -op cache

Key Idea: Keep the alternate path in the μ -op cache for H2P branches

UCP: H2P Branch Detection

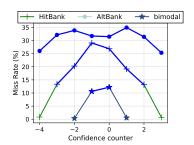

→ H2P Branch: a branch which has high chance of being mispredicted

UCP UCP: H2P Branch Detection

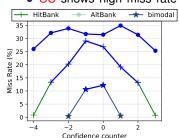

- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²

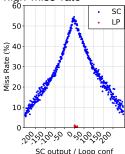
- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²
 - Not saturated predictions from AltBank, HitBank & BiModal

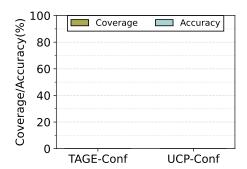
- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²
 - Not saturated predictions from AltBank, HitBank & BiModal
 - Does not consider SC and LP



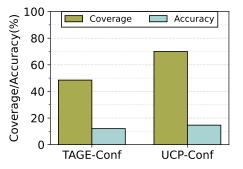
- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²
 - Not saturated predictions from AltBank, HitBank & BiModal
 - Does not consider SC and LP
 - → UCP-Conf


- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²
 - Not saturated predictions from AltBank, HitBank & BiModal
 - Does not consider SC and LP
 - → UCP-Conf
 - All predictions from AltBanks shows high miss rate



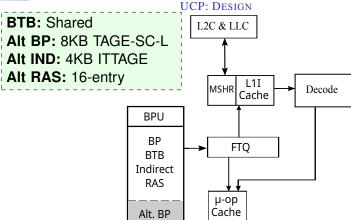

- → H2P Branch: a branch which has high chance of being mispredicted
 - → TAGE-Conf²
 - Not saturated predictions from AltBank, HitBank & BiModal
 - Does not consider SC and LP
 - → UCP-Conf
 - All predictions from AltBanks shows high miss rate
 - SC shows high miss rate

UCP UCP: H2P Branch Detection



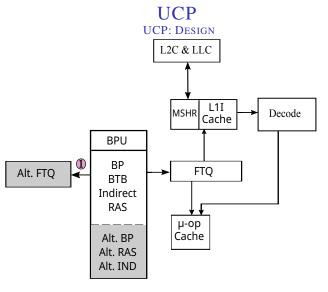
→ TAGE-Conf provide 48.5% coverage and 12% accuracy

UCP UCP: H2P Branch Detection

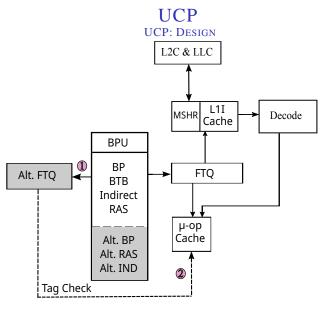


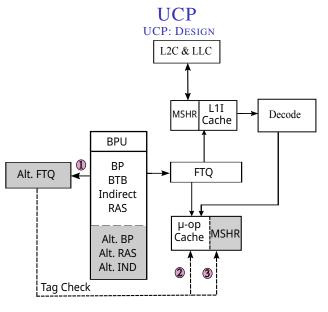
- → TAGE-Conf provide 48.5% coverage and 12% accuracy
- → UCP-Conf improve coverage to 70% and accuracy to 14.66%

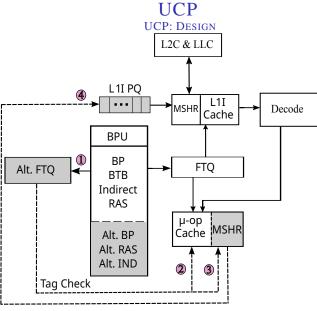
UCP

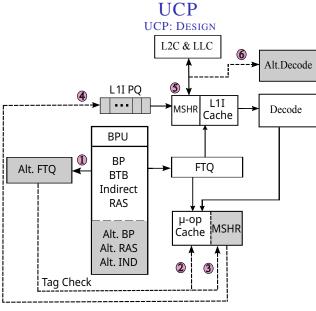


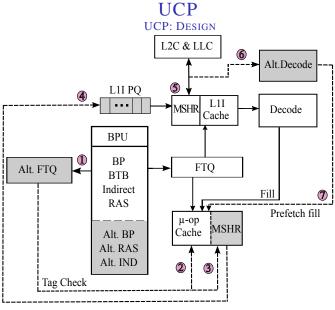
Alt. RAS Alt. IND











UCP: ALTERNATE PATH STOPPING CONDITIONS

ightarrow Stopping alternate path is crucial to prevent $\mu ext{-op}$ cache pollution

UCP

UCP: ALTERNATE PATH STOPPING CONDITIONS

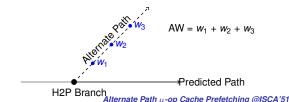
- ightarrow Stopping alternate path is crucial to prevent μ -op cache pollution
- → When a new H2P branch is detected

UCP UCP: ALTERNATE PATH STOPPING CONDITIONS

- \rightarrow Stopping alternate path is crucial to prevent μ -op cache pollution
- → When a new H2P branch is detected
- → When the alternate path is unlikely to become the correct path

UCP UCP: ALTERNATE PATH STOPPING CONDITIONS

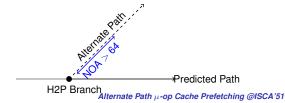
- \rightarrow Stopping alternate path is crucial to prevent μ -op cache pollution
- → When a new H2P branch is detected
- → When the alternate path is unlikely to become the correct path
 - BTB miss on predicted taken branch on the alternate path



UCP

UCP: ALTERNATE PATH STOPPING CONDITIONS

- \rightarrow Stopping alternate path is crucial to prevent μ -op cache pollution
- → When a new H2P branch is detected
- → When the alternate path is unlikely to become the correct path
 - BTB miss on predicted taken branch on the alternate path
 - Weight of each branch on the alternate path is accumulated, high confidence branches have lower weight.



UCP

UCP: ALTERNATE PATH STOPPING CONDITIONS

- \rightarrow Stopping alternate path is crucial to prevent μ -op cache pollution
- → When a new H2P branch is detected
- → When the alternate path is unlikely to become the correct path
 - BTB miss on predicted taken branch on the alternate path
 - Weight of each branch on the alternate path is accumulated, high confidence branches have lower weight.
 - Non-branch instructions after a branch are counted. Once the count reaches 64 alternate paths stops in our work

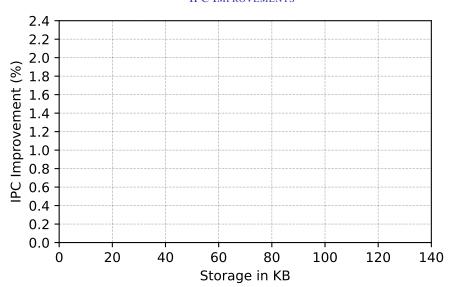
OUTLINE

- Overview
- Background & Motivation
- UCP
- Methodology & Results
- Conclusions

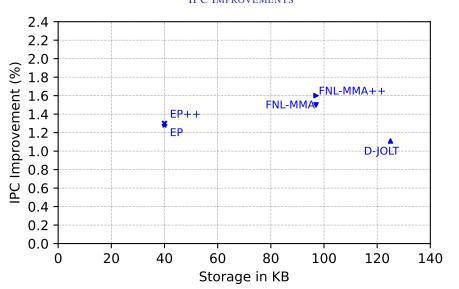
→ ChampSim + subset (traces showing \geq 5% improvement with ideal μ -op cache) of CVP traces (2 FP, 97 INT, 73 Crypto and 134 datacenter trace)

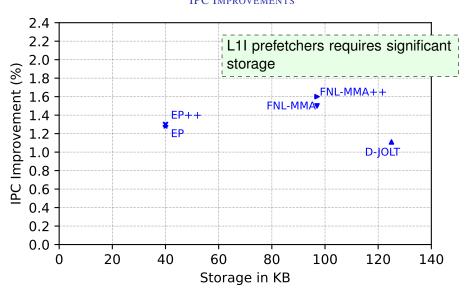
- → ChampSim + subset (traces showing \geq 5% improvement with ideal μ -op cache) of CVP traces (2 FP, 97 INT, 73 Crypto and 134 datacenter trace)
- → Intel Alder Lake like microarchitecture

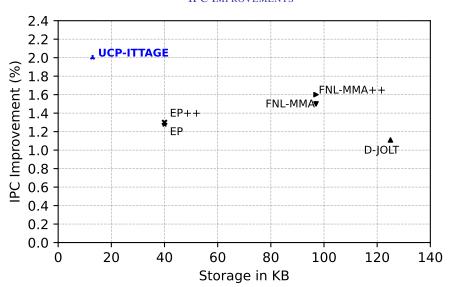
- → ChampSim + subset (traces showing \geq 5% improvement with ideal μ -op cache) of CVP traces (2 FP, 97 INT, 73 Crypto and 134 datacenter trace)
- → Intel Alder Lake like microarchitecture
- → We execute 100M instructions, 50M warmup and 50M to collect stats

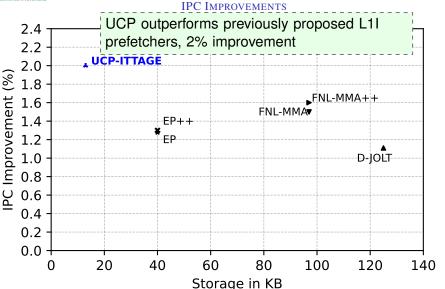


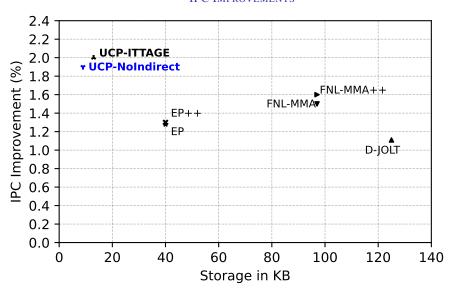
- → ChampSim + subset (traces showing \geq 5% improvement with ideal μ -op cache) of CVP traces (2 FP, 97 INT, 73 Crypto and 134 datacenter trace)
- → Intel Alder Lake like microarchitecture
- → We execute 100M instructions, 50M warmup and 50M to collect stats
- ightarrow 1 cycle penalty for switching from μ -op cache to L1I cache

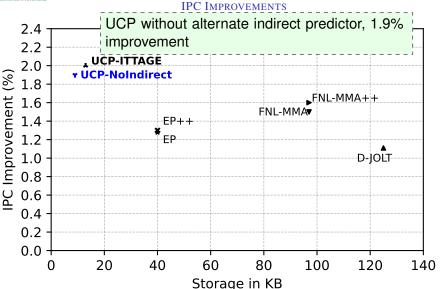


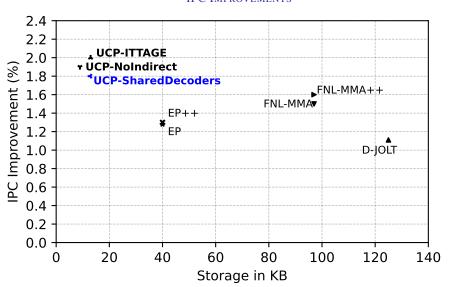


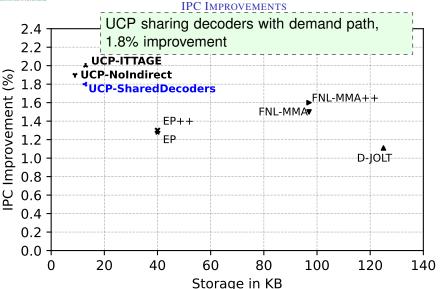


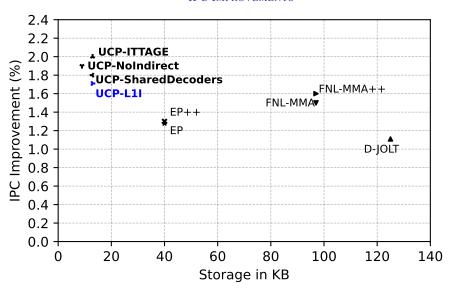


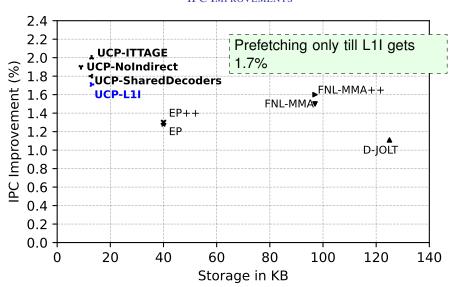

METHODOLOGY & RESULTS

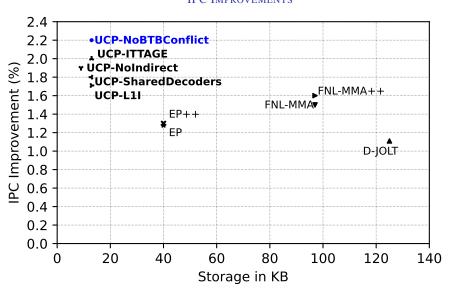


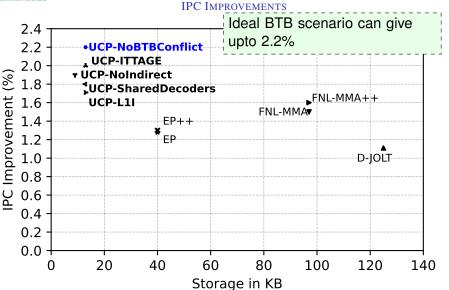

METHODOLOGY & RESULTS

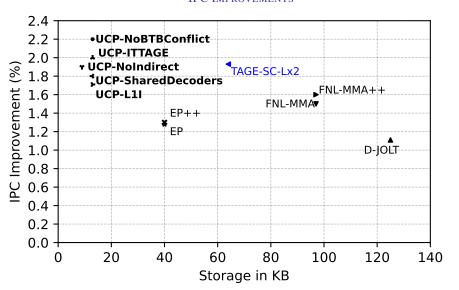


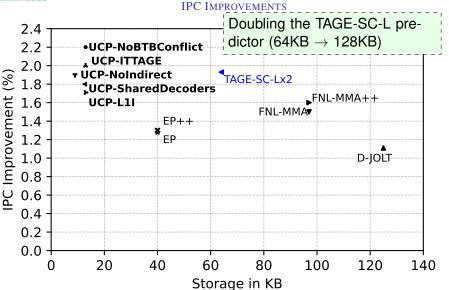

METHODOLOGY & RESULTS








METHODOLOGY & RESULTS



METHODOLOGY & RESULTS

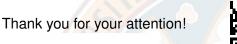
OUTLINE

- Overview
- Background & Motivation
- UCP
- Methodology & Results
- Conclusions

 $\rightarrow\,$ FTQ fails to hide L1I miss latency on branch miss

- → FTQ fails to hide L1I miss latency on branch miss
- → Focusing only a few but critical instructions can provide better performance

- ightarrow FTQ fails to hide L1I miss latency on branch miss
- → Focusing only a few but critical instructions can provide better performance
- → UCP focus on critical instructions after a H2P branch


- → FTQ fails to hide L1I miss latency on branch miss
- → Focusing only a few but critical instructions can provide better performance
- → UCP focus on critical instructions after a H2P branch
- ightarrow Still space for improvement in optimizing μ -op cache

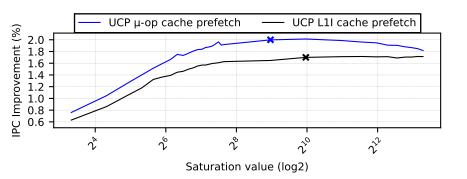
ALTERNATE PATH μ -OP CACHE PREFETCHING

Sawan Singh¹ Arthur Perais² Alexandra Jimborean¹
Alberto Ros¹

singh.sawan@um.es

ECHO, ERC Consolidator Grant (No 819134)

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.



- → UCP reuses the BTB by doubling the number of BTB banks (from 16 to 32)
- → Each cycle we determine the banks to be accessed
- → By default, demand requests are given priority to access the conflict banks
- → UCP keeps a 3-bit saturated counter which is incremented every time the alternate path is delayed
- → When the counter saturates, the alternate path is given priority for the conflict banks in that cycle
- → The counter resets next cycle

