

Alternate Path μ -op Cache Prefetching

Sawan Singh¹ Arthur Perais² Alexandra Jimborean¹ Alberto Ros¹

¹Computer Engineering Department University of Murcia, Spain

²TIMA, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France

ISCA'51, Session 10A, July 3, 2024

Alternate Path μ -op Cache Prefetching @ISCA'51

$\rightarrow \mu$ -op Cache

• Holds recently decoded µ-ops

$ightarrow \ \mu$ -op Cache

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoders

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

$\rightarrow~\mu\text{-op}$ Cache

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoders
- Potential to provide an IPC improvement of 10.82%

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

$ightarrow \ \mu$ -op Cache

- Holds recently decoded $\mu\text{-}\mathrm{ops}$
- First introduced for energy savings¹ in x86 which requires complex decoders
- Potential to provide an IPC improvement of 10.82%
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)

$\rightarrow \mu$ -op Cache

- Holds recently decoded μ -ops
- First introduced for energy savings¹ in x86 which requires complex decoders
- Potential to provide an IPC improvement of 10.82%
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - Identify hard-to-predict branches

¹ Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

Alternate Path μ -op Cache Prefetching @ISCA'51

$ightarrow \mu$ -op Cache

- Holds recently decoded $\mu\text{-}\mathrm{ops}$
- First introduced for energy savings¹ in x86 which requires complex decoders
- Potential to provide an IPC improvement of 10.82%
- \rightarrow We propose UCP (Alternate Path μ -op Cache Prefetching)
 - ① Identify hard-to-predict branches
 - 2 Prefetch μ -ops from alternate path

Solomon et al. Micro-operation cache: a power aware frontend for variable instruction length ISA

OUTLINE

Overview

- Background & Motivation
- **Ο** UCP (*μ-op Cache Prefetching*)
- Methodology & Results
- Conclusions

BACKGROUND & MOTIVATION PROCESSOR FRONT-END

PROCESSOR FRONT-END

PROCESSOR FRONT-END

 \rightarrow Decode latency

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

PERFORMANCE OF μ -OPS CACHE WITH SERVER WORKLOADS

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

$\rightarrow\,$ Increasing size of $\mu\text{-}\mathrm{op}$ cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

ightarrow 0.87% IPC improvement over no μ -op cache

ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

\rightarrow Server workloads overwhelm current μ -op caches

- ightarrow 0.87% IPC improvement over no μ -op cache
- ightarrow Increasing size of μ -op cache does not help

Performance of μ -ops cache with server workloads

- \rightarrow Server workloads overwhelm current μ -op caches
 - ightarrow 0.87% IPC improvement over no μ -op cache
- ightarrow Increasing size of μ -op cache does not help
- \rightarrow Ideal μ -op cache can provide 10.82% improvement

PERFORMANCE OF μ -OPS CACHE WITH SERVER WORKLOADS

- \rightarrow Server workloads overwhelm current μ -op caches
 - ightarrow 0.87% IPC improvement over no μ -op cache
- ightarrow Increasing size of μ -op cache does not help
- \rightarrow Ideal μ -op cache can provide 10.82% improvement

$\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

- $\rightarrow\,$ The FTQ is unable to hide the L1I miss latency on branch misprediction
 - The FTQ is cleared on a branch misprediction
- \rightarrow What if the correct path was always in the μ -op cache after a pipeline flush due to branch misprediction?

OUTLINE

Overview

- Background & Motivation
- **Ο** UCP (*μ-op Cache Prefetching*)
- Methodology & Results
- Conclusions

① Identifies a hard-to-predict conditional branch (H2P)

Alternate Path μ -op Cache Prefetching @ISCA'51

- ① Identifies a hard-to-predict conditional branch (H2P)
- ② Generate addresses on alternate path

- Identifies a hard-to-predict conditional branch (H2P)
- 2 Generate addresses on alternate path
- 3 Prefetch the alternate path to the μ -op cache

- Identifies a hard-to-predict conditional branch (H2P)
- 2 Generate addresses on alternate path
- 3 Prefetch the alternate path to the μ -op cache

UCP (1) H2P BRANCH DETECTION

\rightarrow H2P Branch: a branch which has high chance of being mispredicted

 \rightarrow TAGE-Conf²

²Seznec et. al. Storage free confidence estimation for the TAGE branch predictor Alternate Path µ-op Cache Prefetching @ISCA'51 TiMA

 \rightarrow TAGE-Conf²

• Not saturated predictions from AltBank, HitBank & BiModal

²Seznec et. al. Storage free confidence estimation for the TAGE branch predictor Alternate Path μ-op Cache Prefetching @ISCA'51 TIMA

 \rightarrow TAGE-Conf²

 \bullet Not saturated predictions from AltBank, HitBank & BiModal \rightarrow UCP-Conf

²Seznec et. al. Storage free confidence estimation for the TAGE branch predictor Alternate Path μ-op Cache Prefetching @ISCA'51 TIMA

 \rightarrow TAGE-Conf²

• Not saturated predictions from AltBank, HitBank & BiModal \rightarrow UCP-Conf

• All predictions from AltBanks shows high miss rate

²Seznec et. al. Storage free confidence estimation for the TAGE branch predictor Alternate Path μ-op Cache Prefetching @ISCA'51 ТіМЛ

 \rightarrow TAGE-Conf²

• Not saturated predictions from AltBank, HitBank & BiModal

- → UCP-Conf
 - All predictions from AltBanks shows high miss rate
 - SC shows high miss rate

²Seznec et. al. Storage free confidence estimation for the TAGE branch predictor Alternate Path μ-op Cache Prefetching @ISCA'51 TiMA

ТіМЛ

\rightarrow H2P Branch: a branch which has high chance of being mispredicted

 \rightarrow TAGE-Conf²

• Not saturated predictions from AltBank, HitBank & BiModal

- \rightarrow UCP-Conf
 - All predictions from AltBanks shows high miss rate
 - SC shows high miss rate

 \rightarrow Needs BPU

\rightarrow Needs BPU

- Banking
- Add new predictors

\rightarrow Needs BPU

- Banking
 - For server workloads BTB size is critical
 - Increase the number of banks from 16 to 32
- Add new predictors

- Banking
 - For server workloads BTB size is critical
 - Increase the number of banks from 16 to 32
- Add new predictors
 - Alt BP: 8KB TAGE-SC-L
 - Alt Indirect: 4KB ITTAGE
 - Alt RAS: 16-entry

TIMA

\rightarrow When to stop?

TiMA

UCP ② Generating Addresses

\rightarrow When to stop?

- Weight of each branch on the alternate path is accumulated
 - $\bullet \ \ \text{High confident} \to \text{lower weight}$
 - Lower confident \rightarrow higher weight

TIMA

UCP ② Generating Addresses

\rightarrow When to stop?

- Weight of each branch on the alternate path is accumulated
 - $\bullet \ \ \text{High confident} \to \text{lower weight}$
 - Lower confident \rightarrow higher weight
- BTB miss on the alternate path

TiM

UCP ② Generating Addresses

\rightarrow When to stop?

- Weight of each branch on the alternate path is accumulated
 - High confident \rightarrow lower weight
 - Lower confident \rightarrow higher weight
- BTB miss on the alternate path
- New H2P branch is detected

Confidence counter

TIM

OUTLINE

Overview

- Background & Motivation
- OUCP
- Methodology & Results
- Conclusions

METHODOLOGY & RESULTS SIMULATION SETUP

\rightarrow ChampSim

→ Intel Alder Lake like microarchitecture

METHODOLOGY & RESULTS SIMULATION SETUP

\rightarrow ChampSim

- → Intel Alder Lake like microarchitecture
- → Subset of CVP1³ (traces showing \geq 5% improvement with ideal μ -op cache) [2 FP, 97 INT, 73 Crypto and 134 datacenter trace]

³Feliu et. al. Rebasing Microarchitectural Research with Industry Traces

METHODOLOGY & RESULTS SIMULATION SETUP

\rightarrow ChampSim

→ Intel Alder Lake like microarchitecture

- → Subset of CVP1³ (traces showing \geq 5% improvement with ideal μ -op cache) [2 FP, 97 INT, 73 Crypto and 134 datacenter trace]
- \rightarrow We execute 100M instructions, 50M warmup and 50M to collect stats

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path μ -op Cache Prefetching @ISCA'51

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path μ -op Cache Prefetching @ISCA'51

Alternate Path μ -op Cache Prefetching @ISCA'51

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path µ-op Cache Prefetching @ISCA'51

METHODOLOGY & RESULTS IPC IMPROVEMENTS

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path µ-op Cache Prefetching @ISCA'51

METHODOLOGY & RESULTS IPC IMPROVEMENTS

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path μ -op Cache Prefetching @ISCA'51

METHODOLOGY & RESULTS IPC IMPROVEMENTS

Alternate Path µ-op Cache Prefetching @ISCA'51

Alternate Path µ-op Cache Prefetching @ISCA'51

OUTLINE

Overview

Background & Motivation

UCP

- Methodology & Results
- Conclusions

ightarrow μ -op cache can be used for performance improvements

Alternate Path µ-op Cache Prefetching @ISCA'51

CONCLUSIONS

- ightarrow μ -op cache can be used for performance improvements
- \rightarrow We propose UCP (μ -op Cache Prefetching)

CONCLUSIONS

- ightarrow μ -op cache can be used for performance improvements
- \rightarrow We propose UCP (μ -op Cache Prefetching)
 - Identifies a hard-to-predict branch

CONCLUSIONS

- ightarrow μ -op cache can be used for performance improvements
- \rightarrow We propose UCP (μ -op Cache Prefetching)
 - Identifies a hard-to-predict branch
 - Prefetch critical instructions in the μ -op cache

Alternate Path μ -op Cache Prefetching

Sawan Singh¹

Arthur Perais² Alexandra Jimborean¹ Alberto Ros¹

singh.sawan@um.es

VI.1

Thank you for your attention!

ECHO, ERC Consolidator Grant (No 819134)

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.

Alternate Path µ-op Cache Prefetching @ISCA'51

- \rightarrow Each cycle we determine the banks to be accessed
- → By default, demand requests are given priority to access the conflict banks
- → UCP keeps a 3-bit saturated counter which is incremented every time the alternate path is delayed
- \rightarrow When the counter saturates, the alternate path is given priority for the conflict banks in that cycle
- \rightarrow The counter resets next cycle

Alternate Path μ -op Cache Prefetching @ISCA'51

BACKUP SLIDES[L1I PREFETCHERS]

TiN