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Abstract

I Introduction and motivation

Brain-Computer Interfaces (BCIs) are promising systems that enable the interaction be-
tween the brain and external devices to acquire neural data or perform neurostimulation
actions. Specifically, they aim to measure the status of neurons in terms of their activation
(known as an action potential or spike) or to stimulate these neurons to have a particu-
lar behavior. Since their creation in the decade of 1970, BCIs have been mainly used in
medicine, undergoing a revolution in the 21st century due to new findings in neuroscience.
In these scenarios, BCIs are employed for two tasks: medical diagnostics and neurostimu-
lation. Focusing on the first one, BCIs are extremely useful for detecting and evaluating
a wide range of neurological conditions, such as epilepsy [1], sleep disorders [2], or anxiety
[3]. Additionally, these systems are widely utilized for neuroimaging, where techniques like
magnetic resonance allow the visualization of the brain to identify lesions or tumors.

Regarding neurostimulation, BCIs are a promising alternative for specific conditions
and diseases when the traditional approach based on the administration of drugs is not
effective [4]. Neurostimulation has been proved safe for treating epilepsy, Parkinson’s
disease, essential tremor, obsessive-compulsive disorder, and dystonia, having clearance
from medical organizations such as the FDA in the United States [5, 6]. Furthermore,
new conditions and diseases are under research nowadays for their treatment with BCIs,
being the case of Alzheimer’s disease [7]. Apart from these two main uses, BCIs are
successfully utilized to control external devices such as wheelchairs, prosthetic limbs, and
exoskeletons, improving the quality of life of rehabilitation patients [8]. Furthermore, BCI
technologies can improve cerebral plasticity, memory, reaction ability, or concentration,
allowing cognitive improvement in their users.

In the last few years, the expansion and development of these interfaces have reached
other sectors outside the medical scenario. There are several reasons for this situation,
being the most relevant a reduction of cost and size of technology, an improvement in
hardware and software capabilities, better access to technology from end-users, and the
application of technology and artificial intelligence to almost any sector. Thanks to these
advances, BCIs have gained popularity in entertainment, where users can mentally inter-
act with multimedia systems, such as controlling the volume of a film or changing the TV
channel. Moreover, video games are one of the most promising areas for applying BCIs
since their combination with virtual reality could control the avatar of the game with the
mind, improving the immersive experience [9]. BCIs will also play an essential role in the
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metaverse, where users could not only control an avatar but physically feel sensations that
occur within the simulation. Apart from recreational uses, BCIs are extremely valuable in
marketing research, where these systems help identify the impact that advertisement cam-
paigns have on users from a cognitive and emotional perspective [10]. Moreover, since brain
waves are unique for each person, BCIs are also interesting for building robust authenti-
cation systems based on thoughts while performing particular tasks, such as visualizing
images, imaging limb movements, or mentally recreating a specific song [11].

Based on this technological trend, BCIs are potentially considered Internet of things
devices as it is expected that humans will communicate with their minds in the near future.
In this direction, futuristic paradigms such as Brain-to-Internet (BtI) and Brain-to-Brain
(BtB) communications are expected. The first one involves directly accessing the Internet
using a BCI [12], while the latter aims to enable direct communication between brains [13].
An evolution of BtB is brainets, networks of brains that could directly and telepathically
communicate information [14]. Although these initiatives are prospecting and particularly
ambitious, these directions are being extensively explored in the literature with promising
results, indicating that they could be a reality in the following decades. Based on that,
numerous companies are also focusing on advancing neurotechnology from both acquisition
and neurostimulation perspectives, being an economic sector full of opportunities.

Apart from the separation of BCIs in data acquisition and neurostimulation dimensions,
they can also be classified according to their invasiveness. Thus, non-invasive technologies
for neural data acquisition are the most common for both medical diagnostics and non-
medical scenarios. In this category, electroencephalography (EEG) is the most used due
to its simplicity based on electrodes placed on the scalp, portability, reduced cost, and
high temporal resolution, although it presents a limited spatial resolution [15]. Magnetic
resonance is also included in this category, widely used in hospital diagnostics due to its
good spatial resolution, but it presents limited temporal resolution. Additionally, certain
medical scenarios require the study of specific neuronal populations with both high tempo-
ral and spatial resolutions, typically using invasive techniques such as electrocorticography
(ECoG). However, invasive technologies introduce a risk of tissue damage and infection
that need to be carefully considered [1].

Focusing on invasive neurostimulation, Deep Brain Stimulation (DBS) [4, 5] and Re-
sponsive Neurostimulation (RNS) [16] are the most popular due to their efficacy and safety,
having both clearance from the FDA. The former is used to treat neurological conditions
such as Parkinson’s disease or essential tremor, while the latter is focused on epilepsy.
Despite the advantages and benefits these technologies provide, they have considerable
limitations. Specifically, they stimulate quite broad areas of the brain, being unable to
target individual neurons or even small neuronal populations. Additionally, they are used
for particular treatments, being difficult to extend them to other uses based on their inner
mechanisms and functioning.

Taking into consideration the limitations of contemporary invasive neurostimulation
technologies, new systems have been proposed in the last few years, aiming to target the
brain with better temporal and spatial resolution. One of the most relevant initiatives is
under development by Neuralink, which aims to provide BCI systems to record and stimu-
late the brain with a single-neuron resolution using nanoscale electrodes [17]. Additionally,
they presented a conceptualization of a wearable system placed on the skull that could be
controlled with a smartphone, intending to democratize the access to neurotechnology to
the general public. To ease its implantation, the project developed a robot capable of
inserting miniaturized electrodes into the brain, minimizing the risk of tissue damage by
precisely identifying blood vessels and, thus, determining their best placement. The project
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has successfully tested its prototype in pigs and monkeys, highlighting the feasibility of
this system.

Besides Neuralink, other systems present interesting features for surpassing the current
limitations of invasive neurostimulation technologies. Wireless Optogenetic Nanonetworks
(WiOptND) consists of nanodevices implanted in the cerebral cortex (neural dust) that
emit light pulses to genetically engineered neurons receptive to these stimuli. This ap-
proach permits targeting a tiny population of neurons, allowing their stimulation or exter-
nal inhibition [18]. Albeit these systems propose interesting functionality for surpassing
the limitations of current neurostimulation, they represent concepts and prototypes that
need to be evolved in the next years. In this direction, current BCI development tends to
create invasive devices with fewer risks for users’ heath, the production of wireless devices,
improvements of connectivity by linking them to the Internet, a reduction of their size and
price, and a better temporal and spatial resolution.

Although these advances envision a future where BCIs would improve human abili-
ties and treat neurological diseases, they also introduce enormous cybersecurity concerns.
From the prism of neural data acquisition, several works identified and verified particular
cybersecurity issues, as is the case of Martinovic et al. [19]. They documented that attack-
ers presenting malicious visual stimuli to BCI subjects could obtain sensitive information
such as bank-related data, living area, emotions, sexual orientation, or religious beliefs.
Similarly, Frank et al. [20] presented malicious visual stimuli to subjects, indicating that
images not perceptible by the subject (subliminal) could also have a confidentiality im-
pact on BCI users. However, most works in the literature address cybersecurity on BCI
from a theoretical perspective, identifying potential risks that cyberattackers could exploit
[21, 22, 23, 24]. Nevertheless, it is essential to note that these works are scarce and focus
on just particular aspects of the BCI life cycle, with no works performing a comprehensive
analysis of cybersecurity aspects of BCIs.

Moving to neurostimulation, literature has focused on cybersecurity applied to im-
plantable medical devices (IMD), identifying risks and possible attacks over neurostimu-
lators [25, 26]. Although these works indicate some potential impacts on the brain, they
are quite generic and do not delve into the particularities of the neurological domain. Be-
sides, the development of next-generation neurostimulation systems introduces alarming
concerns. First, the generalization of this kind of technology, which would be accessible
by the general population, could be an incentive for cyberattackers due to the potential
benefit they could obtain in terms of sensitive data. Additionally, the possibility to cause
remote harm to BCI users, as is the case of traditional computer systems and networks,
could be leveraged by criminals aiming to attack determined public personalities or even
the whole country population in terrorist scenarios.

Based on the above, there is an opportunity for works performing a comprehensive
analysis of cybersecurity on BCIs, studying each particular BCI technology, the design
and implementation of the BCI cycle, and the different application scenarios of these
technologies, both existing and prospecting. Furthermore, there are open challenges in
neurostimulation systems, where analysis of novel neurostimulation technologies is lacking
in the literature. Additionally, there is an opportunity for research addressing possible
attacks and impacts of these novel technologies.

Considering these limitations, there is also an opportunity for cyberattacks to affect
spontaneous neuronal signaling, which is defined as the neuronal activity that occurs in the
brain while no attack is performed. One of these possibilities is targeting specific neurons
from individuals using BCIs capable of neural recording and stimulation. Thus, they could
stimulate or inhibit neurons of certain cerebral regions to alter spontaneous neural activity,
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even executing particular stimulation patterns. This situation is extremely sensitive since
attackers targeting a broad coverage of the brain could potentially recreate the effects and
behavior of neurodegenerative diseases, causing a fatal impact on users. In addition, the
development of these cyberattacks could serve to gain a deeper understanding of the brain
and neurodegenerative diseases, contributing to medical research.

Based on the previous considerations, this PhD Thesis first focuses on providing the
current state of cybersecurity applied to BCIs. Moreover, this work explores the feasibility
of affecting spontaneous neural activity by performing cyberattacks over neurostimulation
BCIs, also assessing the impact that they could cause on the brain. In this direction,
several research questions arose from the previous challenges, guiding the research process
of this PhD Thesis, and are presented as follows:

• RQ1: What is the current status of cybersecurity on BCIs for neural data acquisition
and neurostimulation?

• RQ2: What types of cyberattacks and malicious behaviors can affect neural activity
and how perform them using BCI systems?

• RQ3: How can neural cyberattacks be tested on a realistic neurological scenario?

• RQ4: What metrics are useful for measuring and comparing the impact caused by
neural cyberattacks?

II Objectives

The main goal of this PhD Thesis consists in investigating cybersecurity aspects of BCIs,
identifying cyberattacks applicable to different dimensions relevant to BCI, the impact
they cause, and possible countermeasures to mitigate them. Additionally, this work aims
to study the feasibility of cyberattacks aiming to stimulate or inhibit specific neurons of
BCI users in a particular way, analyzing the impact they could cause on spontaneous neural
signaling. From this objective, several specific goals are derived as subsequently presented,
indicating the research questions related to them:

1. Analyze the current state of the art regarding cybersecurity on BCIs for neural data
acquisition and neurostimulation, studying applicable attacks, the impacts that they
could cause, and possible countermeasures to reduce or mitigate these impacts (RQ1).

2. Identify vulnerabilities in existing and next-generation neurostimulation technologies
that cyberattackers could exploit to cause brain damage to BCI users (RQ1).

3. Propose a taxonomy of neural cyberattacks focused on altering the spontaneous
behavior of cerebral activity (RQ2).

4. Implement a set of neural cyberattacks in a biological neural simulator, using a
neuronal topology as realistic as possible (RQ3).

5. Define a set of metrics specific to the neuroscience domain based on the analysis of
neuronal activity to evaluate the impact caused by neural cyberattacks (RQ4).

6. Analyze the impact that neural cyberattacks could cause on spontaneous neural
activity and potentially relate them with the effect of neurodegenerative diseases
(RQ4).
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III Methodology

This PhD Thesis was conducted following a scientific approach based on the continuous
study of the state of the art and the analysis of the results obtained during the different
stages of the research. This thesis is defined as a set of four papers published in high-impact
journals indexed in the Journal Citation Reports (JCR).

To accomplish its first objective and offer a response to the first research question, this
PhD Thesis reviewed the background regarding essential concepts of neuroscience. Addi-
tionally, we reviewed relevant aspects of BCIs, their life cycle, their application to different
scenarios, and common classifications of these interfaces. After that, we analyzed the state
of the art of cybersecurity applied to BCI systems. For that, we first studied the different
definitions and versions of the BCI life cycle, both from a neural data acquisition and
a neurostimulation perspective, offering an standardized version sufficiently general that
could cover any implementation of BCI systems. After that, we identified the applicability
of potential cyberattacks over the stages of the BCI cycle and different architectural de-
ployments of BCIs, an analysis of their impact, and a list of possible countermeasures to
mitigate these impacts. Finally, trends and future challenges were identified, motivating
the development of subsequent publications. All these considerations resulted in the first
publication of this PhD Thesis, presented in the first chapter (Survey of Cybersecurity on
Brain-Computer Interfaces (Article 1–ACM_CSUR)).

After performing the state of the art analysis and identifying the current cybersecurity
problems in BCI scenarios, we analyzed potential vulnerabilities in next-generation neu-
rostimulation implants, particularly in Neuralink, neural dust, and wireless optogenetic
nanonetworks. Based on this study, we concluded the possibility of performing cyberat-
tacks against these devices to take control over their actions and thus stimulate or inhibit
neurons individually (see RQ2). This analysis is aligned with the second objective of the
PhD Thesis, as previously presented. Based on these vulnerabilities, the second publi-
cation of this PhD Thesis, available in the second chapter of this document, Neuronal
Flooding and Neuronal Scanning Cyberattacks (Article 2–IEEE_Access), defined the con-
cept of neural cyberattacks as threats able to alter spontaneous neural activity. It also
formally presented two neural cyberattacks, Neuronal Flooding (FLO) and Neuronal Scan-
ning (SCA), in charge of performing malicious neurostimulation tasks. These cyberattacks
were selected since they represent distinct approaches to affecting neurons by overstim-
ulation, although other approaches are possible, as presented in the last chapter of this
thesis. To implement and validate these attacks, we opted for using a neural simulator,
Brian2 [27], able to recreate the behavior of neurons as realistically as possible, using the
Izhikevich model [28], a neuronal model widely used in neuroscience. This development
aligns with the fourth goal of the thesis.

At this point, a limitation in the research line arose. At the moment of elaborating
the publication, there was a lack of realistic neuronal topologies modeling the distribution
between layers of the cerebral cortex and the connections between neuronal populations.
To face this limitation, this thesis had to search for alternatives to model neural activity
in a realistic way, as close to the biological scenario as possible. Due to this, we opted
for training a Convolutional Neural Network (CNN) [29] in charge of solving the specific
problem of a mouse that must find the exit of a particular maze. This decision was
justified by existing literature indicating the similarities that CNNs and the visual cortex
present in their structure and function. After training, the connections between neurons
and their weights were translated into biological terms and introduced into the simulator.
Furthermore, the mouse’s current position was also used as input to the neuronal model
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to simulate what the mouse saw in each moment, differentiating between available cells
and walls of the maze. Besides, the model resulting from training the CNN provided the
optimal path to exit the maze from any position. Based on that, we only considered the
optimal path to reach the exit from the starting cell of the maze to be included in the
neuronal simulation, having a simplification of the problem. These considerations intend
to answer RQ3.

We tested different numbers of neurons under attack and voltages used to stimulate
those neurons for the implementation and subsequent evaluation of these cyberattacks.
After implementing both neural cyberattacks in the simulator, we defined three metrics
to measure their impact aiming to offer a response to RQ4, also aligning with the fifth
objective. First, it is essential to define the concept of a spike, or action potential, as the
activation of a neuron and the transmission of the stimuli to subsequent neurons. The first
metric, the number of spikes, measured if an attack augmented or reduced the number
of action potentials performed by the neurons compared to the spontaneous situation.
The second metric, the percentage of shifts, indicated the delay of a spike over time,
either forward or backward, compared to the spontaneous case. The dispersion of spikes,
measured both in the dimension of time and number of spikes, is the third metric defined
and consisted in analyzing the spike patterns to identify changes in their distribution,
observing the evolution of the dispersion along the optimal path. Finally, after studying
the impact of each attack individually using these metrics, we compared the results between
attacks, following the last objective.

Once we verified the effectiveness of FLO and SCA using a neuronal simulator, we
defined a new neural cyberattack, Neuronal Jamming (JAM), based on the inhibition
of neuronal activity during a temporal windows. Thus, the third publication of this
PhD Thesis, presented in the third chapter (Neuronal Jamming Cyberattack (Article 3–
Elsevier_COSE)), used the same scenario and experimental configuration based on a CNN
to implement this cyberattack in Brian2. In contrast to previous work, this publication
intended to analyze if there was any relationship between the impact caused by neural
cyberattacks on neuronal activity (particularly FLO and JAM) and the impact on the
mouse’s decision-making ability, assuming that these attacks affect the visual capabilities
of the animal. To validate this objective, we first offered a formal description of JAM,
followed by an analysis of the impact caused by this cyberattack from a biological perspec-
tive using neuronal simulations. After that, we evaluated the CNN model used to build
the biological neuronal topology, aiming to determine how JAM could affect the mouse’s
ability to find the maze exit.

We also evaluated the impact of applying FLO cyberattacks to this scenario. From
the biological perspective, the difference with the second chapter of the PhD Thesis is
that, in that work, we performed the attack in a particular instant at the beginning of the
simulation, and we evaluated its propagation. In contrast, in this third publication, we
separately applied an attack in each position of the optimal path, studying the evolution of
the impact from both the number of spikes and temporal dispersion metrics. Additionally,
we studied the effect of FLO over the artificial network, attending to both the number of
steps to reach the exit and the percentage of times the mouse found the exit. For that, we
analyzed the impact of the attack when the mouse was placed in each individual position
of the optimal path, calculating from that position the performance to exit the maze. As in
the case of the biological approach, we obtained the Pearson correlation between variables
to understand the relationship between the scenarios. Finally, we compared the results of
JAM and FLO, also analyzing the relationship these neural cyberattacks could have on
the effects caused by neurodegenerative diseases.
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The last work done in the PhD Thesis, presented in the fourth chapter of this doc-
ument (Taxonomy of Neural Cyberattacks (Article 4–ACM_CACM)) and aligned with the
third objective, presented a taxonomy of eight neural cyberattacks comprising stimulation
and inhibition of neuronal activity. This work was motivated by a need to propose new
neural cyberattacks and offer a categorization of them, according to RQ2. Three of these
attacks were already presented in previous publications, being the remaining five novels.
For each of these eight cyberattacks, we presented the steps followed by the attack in the
proposed implementation to illustrate their functioning better. After that, we individually
compared the impact of each neural cyberattack with the spontaneous behavior. Finally,
this work contrasted the effect produced between attacks based on the number of spikes
metric, studying the damage caused during the first and last five positions of the optimal
path. This study aimed to understand the impact induced by these attacks in the short
and long term.

In summary, this thesis first reviewed the state of the art of cybersecurity on BCIs,
followed by the identification of vulnerabilities in next-generation neurostimulation BCIs.
Additionally, this work proposed the definition and implementation of different neural
cyberattacks aiming to measure their impact. This methodology allowed for meeting the
objectives defined in the thesis, previously presented in Section II.

IV Results

In the first publication of the PhD Thesis, available in (Article 1–ACM_CSUR), we proposed
the first standardization of the BCI life cycle, both from neural data acquisition and neu-
rostimulation perspectives, sufficiently general that could cover any implementation of BCI
systems. After that, we analyzed potential cybersecurity attacks that could be applied to
each stage of the BCI cycle from both approaches, identifying that common cyberattacks
applicable to traditional computer systems, such as replay attacks, spoofing attacks, jam-
ming attacks, or malware, could apply to all stages of the BCI cycle. We considered four
dimensions to analyze the impacts caused by these cyberattacks: data and service integrity,
data confidentiality, data and service availability, and BCI users’ safety. Additionally, both
countermeasures from the literature and suggested by this work were documented for all
attacks to reduce or mitigate the previously presented impacts.

We also analyzed cybersecurity aspects that could affect different architectural deploy-
ments of the BCI cycle. For each deployment, we presented a description, a series of
examples to better illustrate the concepts, an analysis of cyberattacks that could affect
these architectures, and the impact they could cause. In particular, we identified possible
cyberattacks impacting the BCI, the device controlling the BCI, or the cloud architecture
used to manage users’ data. Besides, this work provided a substantial set of potential
countermeasures to mitigate the effects of these attacks.

This work was valuable in identifying the trend of current BCI systems, which are
moving to BtI and BtB approaches. The goal in these scenarios is to use BCI technologies
to interact with other devices, the Internet, and even allow direct communication between
brains. However, BCI systems present limitations that will determine their evolution. First,
we detected a lack of interoperability between BCI deployments since there is an absence
of standards that make it difficult for companies to produce devices compatible with each
other. Moreover, their functionalities are difficult to extend as they are manufactured for
use in particular application scenarios, complicating the introduction of new cybersecurity
capabilities. There is also a lack of data protection mechanisms or regulations in these
scenarios, essential for ensuring the correct treatment of health-related sensitive data.
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Finally, cybersecurity mechanisms in these systems are missing, requiring an effort to
create devices that protect the sensitive data transmitted and the physical integrity of
their users. All these previous aspects aim to offer an answer to RQ1.

The second publication (Article 2–IEEE_Access) first identified vulnerabilities in the
architecture of prospecting neurostimulation solutions that could allow cyberattackers to
control the system and perform malicious actions. For example, an attacker aiming to
affect the Neuralink architecture could exploit vulnerabilities in the smartphone connected
to the implanted system. Since there are many vulnerabilities and attacks to disrupt
these mobile devices, taking control of the smartphone in charge of managing the BCI
is feasible. Moreover, the link, an intermediary device between the smartphone and the
implanted components, placed under the ear, uses a Bluetooth link that is also susceptible
to firmware modification or jamming attacks, among other threats.

Motivated by the previous vulnerabilities, this publication presented two neural cyber-
attacks: Neuronal Flooding (FLO) and Neuronal Scanning (SCA). Although both cyber-
attacks stimulate a random set of neurons, FLO aims to stimulate neurons in a determined
instant while SCA targets the set of neurons individually and sequentially, avoiding repe-
titions. Regarding their impact on spontaneous neural behavior (see RQ2), FLO reduced
the number of spikes, a difference that increased when the mouse progressed in the maze.
Moreover, augmenting the number of neurons under attack generated a more significant
decrease in the number of spikes. We also concluded that changing the voltage used to
overstimulate the neurons did not significantly impact the metric. Observing the different
topology layers, the variation in the mean of spikes was more significant in deeper lay-
ers. Attending to the percentage of shifts metric, attacking a higher number of neurons
generated a higher percentage of shifts while increasing the voltage had a negligible ef-
fect. Finally, regarding the dispersion metric, the temporal dispersion increased compared
to spontaneous behavior. Focusing on the dispersion of the number of spikes, the attack
generated in the last positions of the optimal path more instants where only one spike
occurred, indicating more dispersion as the simulation advanced. These results indicate
that FLO can effectively alter spontaneous neural activity, covering the fifth objective of
the thesis, as well as offering partial responses for RQ3 and RQ4.

SCA reduced the number of spikes compared to the spontaneous signaling. Moreover,
the impact was slightly increased when augmenting the voltage used to attack, but only
for low voltages. Thus, and similarly to FLO, the impact of the voltage is negligible.
This cyberattack also raised the percentage of spike shifts, degrading the impact when
observing deeper layers. Additionally, we observed significant differences in the dispersion
metrics compared to the spontaneous behavior. Finally, it is interesting to note that the
impact got more aggravating when the mouse progressed in the maze, highlighting the
incremental behavior of this cyberattack. Attending the comparison in terms of impact
between FLO and SCA, we concluded that the inner mechanisms of each attack generate
different behaviors in neuronal activity. FLO is better for altering neural activity in a short
period since it affects multiple neurons in a particular instant. In contrast, SCA is more
effective in the long term, requiring more time to generate a considerable impact, but after
that, the impact is greater than FLO.

In the third publication of the thesis (Article 3–Elsevier_COSE), we presented Neuronal
Jamming (JAM) as a neural cyberattack focused on inhibiting the activity of a set of
neurons for a determined duration, inspired by neurodegenerative diseases consisting in
neuronal malfunction or death, such as Parkinson’s and Alzheimer’s. This work naturally
arose as a continuation of the previous publication with the goal of measuring the impact
of inhibition-based cyberattacks, in contrast to previous work focused on stimulation of
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neurons. The analysis of JAM from a biological perspective indicated that increasing the
number of neurons under attack decreased both the number of spikes and the temporal
dispersion. Additionally, we observed an increment in the distribution variability of these
metrics when increasing the number of consecutive positions attacked, especially in the
number of spikes. From the artificial network, we observed that even attacking a few
random nodes dramatically increased the number of steps, not being able to exit the maze
in most situations. Comparing the Pearson correlation between biological and artificial
metrics, we obtained a low correlation of around 60%. This result was explained by the
restrictions on the experimental considerations presented in the article. However, the
individual analysis per scenario demonstrated the high impact that JAM presents.

After that, we compared the impact of JAM and FLO cyberattacks. In this context,
we first analyzed the individual impact of FLO over both scenarios. In the biological one,
the results indicated that performing the attack in later positions had less impact since the
neuronal activity remained unaltered most of the time. Additionally, targeting a higher
number of neurons generated greater damage. In the artificial network, augmenting the
number of nodes under attack increased the impact until a certain position. After that,
and since the mouse was closer to the exit cell, the impact decreased as the mouse could
find the exit by probability. Comparing both scenarios for FLO, we obtained a correlation
of around 80% between the number of steps and the number of spikes and dispersion,
concluding a significant relationship between scenarios. Finally, we compared the results
of both attacks. As the methodology between attacks differs in this publication, we focused
on studying the correlations obtained. Thus, we appreciated a closer relationship between
both approaches in FLO but considering the previously stated limitations. This analysis
of the impact caused by neural cyberattacks aligns with RQ2.

The last publication of the PhD Thesis (Article 4–ACM_CACM) presented the definition
and implementation of a taxonomy of neural cyberattacks, related to RQ4. This work
naturally extended the set of neural cyberattacks already presented in the previous two
publications of the thesis. Focusing on the novel attacks presented in this work, Neuronal
Selective Forwarding (FOR) consists in sequentially inhibiting neurons without repetitions
along time, while Neuronal Spoofing (SPO) exactly replicates the activity recorded in a
previous temporal window. Neuronal Sybil (SYB) forces a neuron to have the opposite
voltage within the natural voltage range of a neuron. In contrast, Neuronal Sinkhole (SIN)
consists in stimulating neurons from early cortical layers aiming to affect a particular
neuron located in a deeper layer. Finally, Neuronal Nonce (NON) aims to attack a set of
neurons in a given instant, deciding randomly for each one to stimulate or inhibit.

This work depicted their behavior, generating an intuition of their dynamics. After
that, we empirically measured the impact of the eight cyberattacks on spontaneous activity
by attending to the number of spikes metric. Particularly, it studied the impact of the first
and last five positions of the optimal path of the maze to highlight which were more harmful
in the short and long term. Attending to the short term, NON achieved an approximate
12% reduction, followed by JAM with a 5%. Oppositely, SCA was the most damaging in
the long term, offering a reduction of around 9% of spikes, followed by NON with 8%.

V Conclusions and future work

In the last decades, the rapid evolution of BCIs has generated a considerable advance in
medicine, allowing better detection of various neurological diseases. They also provide neu-
rostimulation capabilities to treat diseases like Parkinson’s when a drug-based treatment
results ineffective. This evolution has made them gain popularity in other sectors such
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as entertainment or video games. These systems are being investigated as well for their
connection to the Internet or even for allowing direct communication between brains. This
advance opens a landscape of opportunities for new companies and ideas to dominate a
rising sector aiming to reach the general population in the following decades.

Thanks to this variability in application scenarios, there is a wide variety of BCI tech-
nologies focusing either on neural data acquisition or neurostimulation, also differentiated
based on their cerebral invasiveness. Focusing on invasive neurostimulation BCIs, current
techniques with FDA approval for medical purposes are scarce and present limitations,
such as having a reduced spatial resolution or being limited to particular diseases and
brain regions. Based on that, next-generation BCIs aim to miniaturize electrodes and
technology to enable joint neural data recording and stimulation and inhibition of neural
activity. Their ultimate goal is to democratize BCI technologies and bring them closer to
end-user consumers, separating them from medical scenarios.

However, the previous BCI technologies have not been conceived with the prism of cyb-
ersecurity in mind. In particular, these interfaces lack specific standards and regulations,
making it difficult to unify the security mechanisms required for their commercial use.
There are also no data protection regulations for ensuring the proper use of this sensitive
information. Moreover, the trend of these interfaces focused on neurostimulation, in which
companies such as Neuralink aim to democratize their access, could have a significant
impact on users’ safety.

Attending to the previous concerns and limitations, this PhD Thesis has analyzed the
state of the art regarding cybersecurity on BCIs, detecting a lack of works addressing this
topic. Although some works partially cover certain aspects of cybersecurity in this field,
they are scarce and do not offer a comprehensive view of the problem. Based on that,
this work first analyzes the attacks, impacts, and countermeasures for both the BCI life
cycle and common architectural deployments for these systems. Additionally, this thesis
identified trends and challenges that these systems will face in the near future. These
findings have offered an answer for RQ1, also allowing to complete the first specific goal of
the thesis.

After that, this work proposed the definition of neural cyberattacks as threats that
can affect spontaneous neural activity, advancing the literature in terms of cybersecurity
on BCIs. They are motivated by vulnerabilities identified in prospecting neurostimulation
devices that attackers could exploit to cause harm to BCI users (see the second goal of
the thesis). In this direction, this research first presented Neuronal Flooding and Neuronal
Scanning as cyberattacks able to maliciously stimulate neurons, analyzing their impact
on a neuronal simulation. Since, at that moment, there was a lack of realistic neuronal
topologies, this thesis trained a CNN to solve the particular problem of a mouse that has to
exit a particular maze, translating the resulting topology to a neuronal simulator. It was
motivated by evidence presenting a relationship between some aspects of the functioning
and structure of CNNs and the visual cortex. Both cyberattacks were effective in reducing
neuronal activity. These results offered an answer to RQ3 and RQ4 and helped advance
towards an answer for RQ2 for attacks based on neural stimulation.

With these results in mind, this thesis subsequently presented a third neural cyberat-
tack, Neuronal Jamming, which inhibits the neuronal activity of a set of targeted neurons
for a period of time. This work compared its impact with Neuronal Flooding, also consid-
ering their relationship with the decision-making ability of the mouse to exit the maze. The
results obtained suggested a substantial correlation between the impact of these cyberat-
tacks on neuronal activity and the ability to perform decisions, although further research
is required. Based on these results, this work offered new findings for answering RQ2

xvi PhD Thesis – Sergio López Bernal



Cybersecurity on Brain-Computer Interfaces

regarding cyberattacks applying neural inhibition.
Finally, this research presented a taxonomy of eight neural cyberattacks, where five

of them were novel. For each one, this thesis provided a definition, a description of their
internal functioning, and an analysis of their impact on the short and long term. Based
on that, this work indicated which were more suitable to cause an immediate effect and
which caused more significant damage in the long term. Thus, these results answered RQ2
since they allowed measuring the impact caused by a broad set of behaviors of neural
cyberattacks and helped complete all objectives of the thesis.

In summary, this PhD Thesis has first gathered the existing knowledge in the literature
concerning cybersecurity on BCIs. Additionally, this work has substantially advanced the
state of the art, proposing novel cyberattacks able to affect spontaneous neural activity,
validating their impact in a scenario as realistic as possible to biological neural tissue.

As future work, this thesis first identifies the necessity to comprehensively analyze
vulnerabilities existing in both current and prospecting BCI solutions, which will help
develop practical cybersecurity solutions for specific products. Additionally, it is necessary
to cover the challenges identified in terms of interoperability and extensibility of BCI
solutions and fill current opportunities regarding data regulations and security mechanisms.

Moreover, this research detects the need to extend the analysis of neural cyberattacks,
studying how other traditional cyberattacks from computer science could be adapted to the
neurological scenario. Additionally, this thesis considers it essential to identify aspects of
neurodegenerative diseases that could help widen this cybersecurity research area. Besides,
this work identifies the necessity to evaluate the impact of neural cyberattacks over more
realistic neuronal topologies. Thus, it would first allow measuring the differences between
attacking excitatory or inhibitory neuronal populations. Moreover, the increase in the
number of neurons and the complexity of the network would provide further conclusions
about their effect on natural biological neuronal tissue.

Once a broad understanding of these cyberattacks is obtained, this work highlights an
opportunity for detecting and mitigating these cyberattacks. For that, artificial intelli-
gence, such as machine learning and deep learning techniques, could be useful for their
implementation in novel generations of BCI devices, helping reduce or even mitigate the
harm caused by these threats and even for prospecting ones.

A better intuition of the impact of neural cyberattacks in more realistic conditions
could be vital to recreating the behavior and effect of known neurodegenerative diseases.
Thus, certain cyberattacks could benefit the effects of particular conditions, establishing a
relationship between cyberattacks and diseases. Furthermore, if this milestone is achieved,
then research could focus on predicting, based on spontaneous neural activity, the presence
of specific neurodegenerative diseases, even in the early stages. These advances could
positively benefit medical research and have a massive impact on neurological patients.
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Resumen

I Introducción y motivación

Las interfaces cerebro-máquina (BCIs) son sistemas prometedores que permiten la inter-
acción entre el cerebro y dispositivos externos para adquirir datos neurológicos o realizar
acciones de neuroestimulación. En concreto, su objetivo es medir el estado de las neu-
ronas en términos de su activación (conocida como potencial de acción o spike) o estimular
estas neuronas para que tengan un comportamiento determinado. Desde su creación en
la década de 1970, las BCIs se han utilizado principalmente en medicina, sufriendo una
revolución en el siglo XXI debido a los nuevos descubrimientos en neurociencia. En estos
escenarios, las BCIs se emplean para dos tareas: el diagnóstico médico y la neuroestimu-
lación. Centrándonos en la primera, las BCIs son extremadamente útiles para detectar y
evaluar una amplia gama de condiciones neurológicas, como la epilepsia [1], los trastornos
del sueño [2], o la ansiedad [3]. Además, estos sistemas son ampliamente utilizados para
neuroimagen, donde técnicas como la resonancia magnética permiten la visualización del
cerebro para identificar lesiones o tumores.

En cuanto a la neuroestimulación, las BCIs son una alternativa prometedora para
condiciones y enfermedades específicas cuando el enfoque tradicional basado en la admin-
istración de fármacos no es efectivo [4]. La neuroestimulación ha demostrado ser segura
para el tratamiento de la epilepsia, la enfermedad de Parkinson, el temblor esencial, el
trastorno obsesivo-compulsivo y la distonía, contando con la autorización de organiza-
ciones médicas como la FDA en Estados Unidos [5, 6]. Además, actualmente se están
investigando nuevas afecciones y enfermedades para su tratamiento con BCIs, siendo el
caso de la enfermedad de Alzheimer [7]. Aparte de estos dos usos principales, las BCIs
se utilizan con éxito para controlar dispositivos externos como sillas de ruedas, prótesis y
exoesqueletos, mejorando la calidad de vida de los pacientes de rehabilitación [8]. Además,
las tecnologías BCI pueden mejorar la plasticidad cerebral, la memoria, la capacidad de
reacción o la concentración, permitiendo la mejora cognitiva de sus usuarios.

En los últimos años, la expansión y el desarrollo de estas interfaces han llegado a otros
sectores fuera del escenario médico. Son varias las razones que explican esta situación,
siendo las más relevantes una reducción del coste y del tamaño de la tecnología, una
mejora de las capacidades del hardware y del software, un mejor acceso a la tecnología
por parte de los usuarios finales, y la aplicación de la tecnología y la inteligencia artificial
a casi cualquier sector. Gracias a estos avances, las BCIs han ganado popularidad en
el ámbito del entretenimiento, donde los usuarios pueden interactuar mentalmente con
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los sistemas multimedia, como controlar el volumen de una película o cambiar el canal
de televisión. Además, los videojuegos son una de las áreas más prometedoras para la
aplicación de las BCIs, ya que su combinación con la realidad virtual podría permitir
controlar el avatar del juego con la mente, mejorando la experiencia de inmersión [9]. Las
BCIs también desempeñarán un papel esencial en el metaverso, donde los usuarios podrían
no sólo controlar un avatar sino sentir físicamente las sensaciones que se producen dentro
de la simulación. Aparte de los usos recreativos, las BCIs son extremadamente valiosas en
la investigación de marketing, donde estos sistemas ayudan a identificar el impacto que las
campañas publicitarias tienen en los usuarios desde una perspectiva cognitiva y emocional
[10]. Además, dado que las ondas cerebrales son únicas para cada persona, las BCIs
también son interesantes para construir sistemas de autenticación robustos basados en los
pensamientos mientras se realizan tareas concretas, como visualizar imágenes, imaginar los
movimientos de las extremidades o recrear mentalmente una canción específica [11].

Basándose en esta tendencia tecnológica, las BCIs se consideran potencialmente dis-
positivos del Internet de las cosas, ya que se espera que los humanos se comuniquen con
sus mentes en un futuro próximo. En esta dirección, se esperan paradigmas futuristas
como las comunicaciones Brain-to-Internet (BtI) y Brain-to-Brain (BtB). El primero im-
plica acceder directamente a Internet utilizando una BCI [12], mientras que el segundo
pretende permitir la comunicación directa entre cerebros [13]. Una evolución de BtB son
las brainets, redes de cerebros que podrían comunicar información directa y telepática-
mente [14]. Aunque estas iniciativas son prospectivas y particularmente ambiciosas, estas
direcciones están siendo ampliamente exploradas en la literatura con resultados promete-
dores, lo que indica que podrían ser una realidad en las próximas décadas. En base a
ello, numerosas empresas también se están centrando en el avance de la neurotecnología,
tanto desde la perspectiva de la adquisición como de la neuroestimulación, siendo un sector
económico lleno de oportunidades.

Aparte de la separación de las BCIs en las dimensiones de adquisición de datos y neu-
roestimulación, también pueden clasificarse según su carácter invasivo. Así, las tecnologías
no invasivas para la adquisición de datos neuronales son las más comunes tanto para los
diagnósticos médicos como para los escenarios no médicos. En esta categoría, la elec-
troencefalografía (EEG) es la más utilizada debido a su simplicidad basada en electrodos
colocados en el cuero cabelludo, portabilidad, coste reducido y alta resolución temporal,
aunque presenta una resolución espacial limitada [15]. También se incluye en esta cate-
goría la resonancia magnética, muy utilizada en el diagnóstico hospitalario por su buena
resolución espacial, pero que presenta una resolución temporal limitada. Además, ciertos
escenarios médicos requieren el estudio de poblaciones neuronales específicas con resolu-
ciones temporales y espaciales altas, normalmente utilizando técnicas invasivas como la
electrocorticografía (ECoG). Sin embargo, las tecnologías invasivas introducen un riesgo
de daño de tejidos e infección que debe ser cuidadosamente considerado [1].

Centrándonos en la neuroestimulación invasiva, la estimulación cerebral profunda (DBS)
[4, 5] y la neuroestimulación receptiva (RNS) [16] son las más populares debido a su eficacia
y seguridad, teniendo ambas la autorización de la FDA. La primera se utiliza para tratar
afecciones neurológicas como la enfermedad de Parkinson o el temblor esencial, mientras
que la segunda se centra en la epilepsia. A pesar de las ventajas y beneficios que aportan
estas tecnologías, tienen considerables limitaciones. En concreto, estimulan áreas bastante
amplias del cerebro, siendo incapaces de centrarse en neuronas individuales o incluso en pe-
queñas poblaciones neuronales. Además, se utilizan para tratamientos particulares, siendo
difícil extenderlos a otros usos en función de sus mecanismos internos y su funcionamiento.

Teniendo en cuenta las limitaciones de las tecnologías de neuroestimulación invasivas
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contemporáneas, en los últimos años se han propuesto nuevos sistemas que pretenden
cubrir el cerebro con una mejor resolución temporal y espacial. Una de las iniciativas más
relevantes es la que está desarrollando Neuralink, cuyo objetivo es proporcionar sistemas
BCI para obtener actividad neuronal y estimular el cerebro con una resolución de neurona
individual utilizando electrodos a nanoescala [17]. Además, presentaron una conceptual-
ización de un sistema wearable emplazada en el cráneo que podría ser controlado con un
smartphone, con la intención de democratizar el acceso a la neurotecnología al público
general. Para facilitar su implantación, el proyecto desarrolló un robot capaz de insertar
electrodos miniaturizados en el cerebro, minimizando el riesgo de dañar los tejidos al iden-
tificar con precisión los vasos sanguíneos y, por tanto, determinar su mejor ubicación. El
proyecto ha probado con éxito su prototipo en cerdos y monos, poniendo de manifiesto la
viabilidad de este sistema.

Además de Neuralink, otros sistemas presentan características interesantes para su-
perar las limitaciones actuales de las tecnologías de neuroestimulación invasiva. El sistema
Wireless Optogenetic Nanonetworks (WiOptND) consiste en nanodispositivos implantados
en la corteza cerebral (neural dust) que emiten pulsos de luz a neuronas genéticamente
modificadas y receptivas a estos estímulos. Este enfoque permite dirigirse a una población
diminuta de neuronas, permitiendo su estimulación o inhibición externa [18]. Aunque es-
tos sistemas proponen una funcionalidad interesante para superar las limitaciones de la
neuroestimulación actual, representan conceptos y prototipos que deben evolucionar en los
próximos años. En esta dirección, el desarrollo actual de las BCIs tiende a la creación de
dispositivos invasivos con menos riesgos para la salud de los usuarios, a la producción de
dispositivos inalámbricos, a la mejora de la conectividad mediante su conexión a Internet,
a la reducción de su tamaño y precio, y a una mejor resolución temporal y espacial.

Aunque estos avances vislumbran un futuro en el que las BCIs mejorarían las capaci-
dades humanas y tratarían las enfermedades neurológicas, también introducen enormes
problemas de ciberseguridad. Desde el prisma de la adquisición de datos neuronales, var-
ios trabajos identificaron y comprobaron problemas particulares de ciberseguridad, como
es el caso de Martinovic et al. [19]. Estos autores documentarion que los atacantes que
presentaban estímulos visuales maliciosos a los sujetos de la BCI podían obtener informa-
ción sensible, como datos relacionados con la banca, la zona en la que viven, emociones,
orientación sexual o creencias religiosas. Del mismo modo, Frank et al. [20] presentaron es-
tímulos visuales maliciosos a los sujetos, indicando que las imágenes no perceptibles por el
sujeto (subliminales) también podrían tener un impacto de confidencialidad en los usuarios
de BCI. Sin embargo, la mayoría de los trabajos en la literatura abordan la ciberseguridad
en BCI desde una perspectiva teórica, identificando los riesgos potenciales que los cibera-
tacantes podrían explotar [21, 22, 23, 24]. Sin embargo, es fundamental señalar que estos
trabajos son escasos y se centran sólo en aspectos particulares del ciclo de vida de BCI, no
existiendo trabajos que realicen un análisis integral de los aspectos de ciberseguridad de
las BCIs.

Pasando a la neuroestimulación, la literatura se ha centrado en la ciberseguridad apli-
cada a los dispositivos médicos implantables (IMD), identificando riesgos y posibles ataques
sobre los neuroestimuladores [25, 26]. Aunque estos trabajos indican algunos impactos po-
tenciales sobre el cerebro, son bastante genéricos y no profundizan en las particularidades
del ámbito neurológico. Además, el desarrollo de sistemas de neuroestimulación de nueva
generación introduce preocupaciones alarmantes. En primer lugar, la generalización de este
tipo de tecnología, que sería accesible para la población en general, podría ser un incentivo
para los ciberatacantes debido al potencial beneficio que podrían obtener en términos de
datos sensibles. Además, la posibilidad de causar daño a distancia a los usuarios de BCI,
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como es el caso de los sistemas y redes informáticas tradicionales, podría ser aprovechada
por los delincuentes con el objetivo de atacar a determinadas personalidades públicas o
incluso a toda la población de un país en escenarios terroristas.

En base a lo anterior, existe una oportunidad para la realización de trabajos de análisis
exhaustivo de la ciberseguridad en las BCIs, estudiando cada tecnología BCI en particular,
el diseño e implementación del ciclo de BCI, y los diferentes escenarios de aplicación de
estas tecnologías, tanto los existentes como los potencialmente emergentes. Por otra parte,
existen retos abiertos en los sistemas de neuroestimulación, donde el análisis de las nuevas
tecnologías de neuroestimulación está ausente en la literatura. Además, se presenta una
oportunidad para investigar los posibles ataques e impactos de estas nuevas tecnologías.

Teniendo en cuenta estas limitaciones, también existe una oportunidad para realizar
ciberataques que afecten a la señalización neuronal espontánea, que se define como la ac-
tividad neuronal que se produce naturalmente en el cerebro mientras no se realiza ningún
ataque. Una de estas posibilidades es focalizarse en neuronas específicas de los indivi-
duos utilizando BCIs capaces de leer y estimular las neuronas. Así, podrían estimular
o inhibir neuronas de determinadas regiones cerebrales para alterar la actividad neuronal
espontánea, incluso ejecutando patrones de estimulación particulares. Esta situación es ex-
tremadamente delicada, ya que atacantes con acceso a amplias zonas del cerebro podrían
recrear potencialmente los efectos y el comportamiento de las enfermedades neurodegen-
erativas, causando un impacto fatal en los usuarios. Además, el desarrollo de estos cibera-
taques podría servir para conocer mejor el cerebro y las enfermedades neurodegenerativas,
contribuyendo a la investigación médica.

Partiendo de las consideraciones anteriores, esta tesis doctoral se centra en primer
lugar en proporcionar el estado actual de la ciberseguridad aplicada a las BCIs. Además,
este trabajo explora la viabilidad de afectar a la actividad neuronal espontánea mediante la
realización de ciberataques sobre BCIs de neuroestimulación, evaluando también el impacto
que podrían causar en el cerebro. En esta dirección, varias preguntas de investigación
surgieron de los retos anteriores, guiando el proceso de investigación de esta tesis doctoral,
tal y como se presentan a continuación:

• RQ1: ¿Cuál es el estado actual de la ciberseguridad en BCIs para adquisición de
datos neuronales y neuroestimulación?

• RQ2: ¿Qué tipos de ciberataques y comportamientos maliciosos pueden afectar a la
actividad neuronal y cómo aplicarlos usando sistemas BCI?

• RQ3: ¿Cómo se podrían evaluar los ciberataques neuronales en escenarios neurológi-
cos realistas?

• RQ4: ¿Qué métricas son útiles para medir y comparar el impacto causado por ciber-
ataques neuronales?

II Objetivos

El objetivo principal de esta tesis doctoral consiste en investigar los aspectos de ciberse-
guridad de las BCIs, identificando los ciberataques aplicables a diferentes dimensiones
relevantes para las BCIs, el impacto que causan y las posibles contramedidas para miti-
garlos. Además, este trabajo pretende estudiar la viabilidad de los ciberataques dirigidos
a estimular o inhibir neuronas específicas de los usuarios de BCI de forma particular, ana-
lizando el impacto que podrían causar en la señalización neuronal espontánea. De este
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objetivo se derivan varias metas específicas que se presentan a continuación, indicando las
preguntas de investigación relacionadas con ellas:

1. Analizar el estado del arte actual en materia de ciberseguridad en las BCIs para
la adquisición de datos neuronales y la neuroestimulación, estudiando los ataques
aplicables, los impactos que podrían causar y las posibles contramedidas para reducir
o mitigar estos impactos (RQ1).

2. Identificar las vulnerabilidades en las tecnologías de neuroestimulación existentes y
de próxima generación que los ciberatacantes podrían aprovechar para causar daños
cerebrales a los usuarios de BCI (RQ1).

3. Proponer una taxonomía de ciberataques neurales centrados en la alteración del
comportamiento espontáneo de la actividad cerebral (RQ2).

4. Implementar un conjunto de ciberataques neuronales en un simulador neuronal bio-
lógico, utilizando una topología neuronal lo más realista posible (RQ3).

5. Definir un conjunto de métricas específicas del ámbito de la neurociencia basadas en el
análisis de la actividad neuronal para evaluar el impacto causado por los ciberataques
neuronales (RQ4).

6. Analizar el impacto que los ciberataques neuronales podrían causar en la actividad
neuronal espontánea y potencialmente relacionarlos con el efecto de las enfermedades
neurodegenerativas (RQ4).

III Metodología

Esta tesis doctoral se ha realizado siguiendo un enfoque científico basado en el estudio
continuo del estado del arte y el análisis de los resultados obtenidos durante las diferen-
tes etapas de la investigación. Esta tesis se define como un conjunto de cuatro trabajos
publicados en revistas de alto impacto indexadas en el Journal Citation Reports (JCR).

Para cumplir su primer objetivo y ofrecer una respuesta a la primera pregunta de in-
vestigación, esta tesis doctoral revisó los antecedentes relativos a conceptos esenciales de
la neurociencia. Además, revisamos aspectos relevantes de las BCIs, su ciclo de vida, su
aplicación a diferentes escenarios y las clasificaciones comunes de estas interfaces. Después,
analizamos el estado del arte de la ciberseguridad aplicada a los sistemas BCI. Para ello,
primero estudiamos las diferentes definiciones y versiones del ciclo de vida de las BCIs,
tanto desde la perspectiva de la adquisición de datos neuronales como de la neuroestimu-
lación, ofreciendo una versión estandarizada lo suficientemente general como para cubrir
cualquier implementación de sistemas BCI. A continuación, se identificó la aplicabilidad
de los posibles ciberataques a lo largo de las etapas del ciclo de BCI y de los diferentes
despliegues arquitectónicos de las BCIs, un análisis de su impacto y una lista de posibles
contramedidas para mitigar estos impactos. Por último, se identificaron las tendencias
y los retos futuros, lo que motivó el desarrollo de publicaciones posteriores. Todas estas
consideraciones dieron lugar a la primera publicación de esta tesis doctoral, presentada en
el primer capítulo (Article 1–ACM_CSUR).

Después de realizar el análisis del estado del arte e identificar los problemas actuales
de ciberseguridad en los escenarios de BCI, analizamos las posibles vulnerabilidades en los
implantes de neuroestimulación de próxima generación, especialmente en Neuralink, neural
dust y las wireless optogenetic nanonetworks. Basándonos en este estudio, concluimos la
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posibilidad de realizar ciberataques contra estos dispositivos para tomar el control de sus
acciones y así estimular o inhibir neuronas de forma individual (ver RQ2). Este análisis
está alineado con el segundo objetivo de la tesis doctoral, presentado anteriormente. En
base a estas vulnerabilidades, la segunda publicación de esta tesis doctoral, disponible en el
segundo capítulo de este documento, Article 2–IEEE_Access, definió el concepto de ciber-
ataques neuronales como amenazas capaces de alterar la actividad neuronal espontánea.
También presentó formalmente dos ciberataques neuronales, Neuronal Flooding (FLO) y
Neuronal Scanning (SCA), encargados de realizar tareas de neuroestimulación maliciosa.
Estos ciberataques fueron seleccionados ya que representan enfoques distintos para afectar
a las neuronas mediante sobreestimulación, aunque son posibles otros enfoques, como se
presenta en el último capítulo de esta tesis. Para implementar y validar estos ataques, se
optó por utilizar un simulador neuronal, Brian2 [27], capaz de recrear el comportamiento
de las neuronas de la forma más realista posible, utilizando el modelo de Izhikevich [28],
un modelo neuronal ampliamente utilizado en neurociencia. Este desarrollo se alinea con
el cuarto objetivo de la tesis.

En este punto, surgió una limitación en la línea de investigación. En el momento de
elaborar la publicación, se carecía de topologías neuronales realistas que modelaran la dis-
tribución entre capas de la corteza cerebral y las conexiones entre poblaciones neuronales.
Para hacer frente a esta limitación, esta tesis tuvo que buscar alternativas para modelar la
actividad neuronal de forma realista, lo más cercana al escenario biológico. Debido a esto,
se optó por entrenar una red neural convolucional (CNN) [29] encargada de resolver el
problema específico de un ratón que debe encontrar la salida de un determinado laberinto.
Esta decisión se justificó por la literatura existente que indica las similitudes que presentan
las CNNs y la corteza visual en su estructura y funcionamiento. Tras el entrenamiento, las
conexiones entre neuronas y sus pesos se tradujeron en términos biológicos y se introdu-
jeron en el simulador. Además, la posición actual del ratón también se utilizó como entrada
al modelo neuronal para simular lo que el ratón veía en cada momento, diferenciando en-
tre las celdas transitables y las paredes del laberinto. Además, el modelo resultante del
entrenamiento de la CNN proporcionaba el camino óptimo para salir del laberinto desde
cualquier posición. En base a ello, sólo consideramos el camino óptimo para llegar a la
salida desde la celda inicial del laberinto para incluirlo en la simulación neuronal, teniendo
una simplificación del problema. Estas consideraciones pretenden responder a la RQ3.

Probamos diferentes números de neuronas bajo ataque y voltajes utilizados para estim-
ular esas neuronas para la implementación y posterior evaluación de estos ciberataques.
Tras implementar ambos ciberataques neuronales en el simulador, definimos tres métricas
para medir su impacto con el fin de ofrecer una respuesta a la RQ4, alineándose también
con el quinto objetivo. En primer lugar, es esencial definir el concepto de spike, o potencial
de acción, como la activación de una neurona y la transmisión del estímulo a las neuronas
siguientes. La primera métrica, el número de spikes, mide si un ataque aumenta o reduce
el número de potenciales de acción realizados por las neuronas en comparación con la
situación espontánea. La segunda métrica, el porcentaje de desplazamientos, indicaba el
desplazamiento de un spike en el tiempo, ya sea hacia delante o hacia atrás, en compara-
ción con el caso espontáneo. La dispersión de los spikes, medida tanto en la dimensión del
tiempo como del número de spikes, es la tercera métrica definida y consistió en analizar los
patrones de spikes para identificar los cambios en su distribución, observando la evolución
de la dispersión a lo largo del camino óptimo. Finalmente, tras estudiar el impacto de
cada ataque individualmente utilizando estas métricas, comparamos los resultados entre
ataques, siguiendo el último objetivo.

Una vez comprobada la eficacia de FLO y SCA mediante un simulador neuronal, defin-
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imos un nuevo ciberataque neuronal, Neuronal Jamming (JAM), basado en la inhibición
de la actividad neuronal durante una ventana temporal. Así, la tercera publicación de esta
tesis doctoral, presentada en el tercer capítulo (Article 3–Elsevier_COSE), utilizó el mismo
escenario y configuración experimental basada en una CNN para implementar este cibera-
taque en Brian2. A diferencia de los trabajos anteriores, en esta publicación se pretendía
analizar si existía alguna relación entre el impacto causado por los ciberataques neuronales
en la actividad neuronal (particularmente FLO y JAM) y el impacto en la capacidad de
decisión del ratón, asumiendo que estos ataques afectan a las capacidades visuales del ani-
mal. Para validar este objetivo, primero ofrecimos una descripción formal de JAM, seguida
de un análisis del impacto causado por este ciberataque desde una perspectiva biológica
utilizando simulaciones neuronales. Después, evaluamos el modelo de la CNN utilizado
para construir la topología neuronal biológica, con el objetivo de determinar cómo JAM
podría afectar a la capacidad del ratón para encontrar la salida del laberinto.

También evaluamos el impacto de la aplicación de los ciberataques de FLO en este es-
cenario. Desde el punto de vista biológico, la diferencia con el segundo capítulo de la tesis
doctoral es que, en ese trabajo, realizamos el ataque en un instante concreto al inicio de
la simulación, y evaluamos su propagación. En cambio, en esta tercera publicación, apli-
camos por separado un ataque en cada posición del camino óptimo, estudiando la evolución
del impacto tanto desde la métrica del número de spikes como de la dispersión temporal.
Además, estudiamos el efecto de FLO sobre la red artificial, atendiendo tanto al número
de pasos para llegar a la salida como al porcentaje de veces que el ratón encontró la salida.
Para ello, analizamos el impacto del ataque cuando el ratón se situaba en cada posición
individual del camino óptimo, calculando a partir de esa posición el rendimiento para salir
del laberinto. Como en el caso del enfoque biológico, obtuvimos la correlación de Pearson
entre las variables para entender la relación entre los escenarios. Finalmente, comparamos
los resultados de JAM y FLO, analizando también la relación que estos ciberataques neu-
ronales podrían tener sobre los efectos causados por las enfermedades neurodegenerativas.

El último trabajo realizado en la tesis doctoral, que se presenta en el cuarto capítulo de
este documento (Article 4–ACM_CACM) y que está alineado con el tercer objetivo, presentó
una taxonomía de ocho ciberataques neuronales que comprenden la estimulación e inhibi-
ción de la actividad neuronal. Este trabajo fue motivado por la necesidad de proponer
nuevos ciberataques neuronales y ofrecer una categorización de los mismos, de acuerdo a
la RQ2. Tres de estos ataques ya fueron presentados en publicaciones anteriores, siendo los
cinco restantes novedosos. Para cada uno de estos ocho ciberataques, presentamos los pasos
que sigue el ataque en la implementación propuesta para ilustrar mejor su funcionamiento.
Después, comparamos individualmente el impacto de cada ciberataque neural con el com-
portamiento espontáneo. Por último, este trabajo contrastó el efecto producido entre los
ataques en función de la métrica del número de spikes, estudiando el daño causado durante
las primeras y las últimas cinco posiciones de la trayectoria óptima. Este estudio pretendía
comprender el impacto inducido por estos ataques a corto y largo plazo.

En resumen, esta tesis revisó en primer lugar el estado del arte de la ciberseguridad
en BCIs, seguido de la identificación de vulnerabilidades en BCIs de neuroestimulación
de próxima generación. Además, este trabajo propuso la definición e implementación de
diferentes ciberataques neuronales con el objetivo de medir su impacto. Esta metodología
permitió cumplir con los objetivos definidos en la tesis, previamente presentados en la
sección II.
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IV Resultados

En la primera publicación de la tesis doctoral, disponible en (Article 1–ACM_CSUR), propusi-
mos la primera estandarización del ciclo de vida de BCI, tanto desde el punto de vista de la
adquisición de datos neuronales como de la neuroestimulación, lo suficientemente general
como para poder cubrir cualquier implementación de sistemas BCI. Después, analizamos
los posibles ataques de ciberseguridad que podrían aplicarse a cada etapa del ciclo BCI
desde ambos enfoques, identificando que los ciberataques comunes aplicables a los sistemas
informáticos tradicionales, como los ataques de repetición, los ataques de suplantación, los
ataques de interferencia o el malware, podrían aplicarse a todas las etapas del ciclo de
la BCI. Consideramos cuatro dimensiones para analizar los impactos causados por estos
ciberataques: la integridad de los datos y del servicio, la confidencialidad de los datos,
la disponibilidad de los datos y del servicio, y la seguridad física de los usuarios de BCI.
Además, para todos los ataques se documentaron tanto las contramedidas procedentes
de la literatura como las sugeridas por este trabajo para reducir o mitigar los impactos
presentados anteriormente.

También analizamos los aspectos de ciberseguridad que podrían afectar a diferentes
despliegues arquitectónicos del ciclo BCI. Para cada despliegue, presentamos una descrip-
ción, una serie de ejemplos para ilustrar mejor los conceptos, un análisis de los ciberataques
que podrían afectar a estas arquitecturas y el impacto que podrían causar. En particular,
identificamos los posibles ciberataques que afectan a la BCI, al dispositivo que controla la
BCI o a la arquitectura cloud utilizada para gestionar los datos de los usuarios. Además,
este trabajo proporcionó un conjunto sustancial de posibles contramedidas para mitigar
los efectos de estos ataques.

Este trabajo fue relevante para identificar la tendencia de los sistemas BCI actuales,
que están moviéndose a enfoques BtI y BtB. El objetivo en estos escenarios es utilizar
las tecnologías BCI para interactuar con otros dispositivos, Internet e, incluso, permitir la
comunicación directa entre cerebros. Sin embargo, los sistemas BCI presentan limitaciones
que determinarán su evolución. En primer lugar, detectamos una falta de interoperabilidad
entre las implantaciones de BCI, ya que existe una ausencia de estándares que dificulta que
las empresas produzcan dispositivos compatibles entre sí. Además, sus funcionalidades son
difíciles de ampliar, ya que se fabrican para su uso en escenarios de aplicación concretos, lo
que complica la introducción de nuevas capacidades de ciberseguridad. También existe una
falta de mecanismos o normativas de protección de datos en estos escenarios, esenciales
para asegurar el correcto tratamiento de los datos sensibles relacionados con la salud. Por
último, faltan mecanismos de ciberseguridad en estos sistemas, lo que exige un esfuerzo
para crear dispositivos que protejan los datos sensibles transmitidos y la integridad física
de sus usuarios. Todos estos aspectos anteriores pretenden ofrecer una respuesta a la RQ1.

La segunda publicación (Article 2–IEEE_Access) identificó por primera vez vulnerabil-
idades en la arquitectura de las soluciones de neuroestimulación de nueva generación que
podrían permitir a los ciberatacantes controlar el sistema y realizar acciones maliciosas.
Por ejemplo, un atacante que pretendiera afectar a la arquitectura de Neuralink podría
aprovechar las vulnerabilidades del smartphone conectado al sistema implantado. Dado
que existen muchas vulnerabilidades y ataques para perturbar estos dispositivos móviles,
tomar el control del smartphone encargado de gestionar la BCI es factible. Además, el link,
un dispositivo intermediario entre el smartphone y los componentes implantados, colocado
bajo la oreja, utiliza un enlace Bluetooth que también es susceptible de modificación de
hardware o de sufrir ataques de interferencia, entre otras amenazas.

Motivado por las vulnerabilidades anteriores, esta publicación presentó dos ciberata-
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ques neuronales: Neuronal Flooding (FLO) y Neuronal Scanning (SCA). Aunque ambos
ciberataques estimulan un conjunto aleatorio de neuronas, FLO pretende estimular las
neuronas en un instante determinado mientras que SCA se enfoca en el conjunto de neu-
ronas de forma individual y secuencial, evitando las repeticiones. En cuanto a su impacto
en el comportamiento neuronal espontáneo (ver RQ2), FLO redujo el número de spikes,
una diferencia que aumentó cuando el ratón progresó en el laberinto. Además, el aumento
del número de neuronas atacadas generó una disminución más significativa del número
de spikes. También concluimos que cambiar el voltaje utilizado para sobreestimular las
neuronas no tuvo un impacto significativo en la métrica. Observando las diferentes ca-
pas de la topología, la variación de la media de spikes fue más significativa en las capas
más profundas. Atendiendo a la métrica del porcentaje de desplazamientos, atacar un
mayor número de neuronas generó un mayor porcentaje de desplazamientos mientras que
aumentar el voltaje tuvo un efecto insignificante. Por último, en cuanto a la métrica de la
dispersión, la dispersión temporal aumentó en comparación con el comportamiento espon-
táneo. Centrándonos en la dispersión del número de spikes, el ataque generó en las últimas
posiciones de la trayectoria óptima más instantes en los que sólo se produjo un spike, lo
que indica una mayor dispersión a medida que avanzaba la simulación. Estos resultados
indican que FLO puede alterar eficazmente la actividad neuronal espontánea, cubriendo el
quinto objetivo de la tesis, además de ofrecer respuestas parciales para RQ3 y RQ4.

SCA redujo el número de spikes en comparación con la señalización espontánea. Además,
el impacto se incrementó ligeramente al aumentar el voltaje utilizado para atacar, pero
sólo para voltajes bajos. Así, y de forma similar a FLO, el impacto del voltaje es in-
significante. Este ciberataque también aumentó el porcentaje de desplazamientos de los
spikes, degradando el impacto cuando se observan capas más profundas. Además, identi-
ficamos diferencias significativas en las métricas de dispersión en comparación con el com-
portamiento espontáneo. Por último, es interesante observar que el impacto se agravaba
cuando el ratón progresaba en el laberinto, lo que pone de manifiesto el comportamiento
incremental de este ciberataque. Atendiendo a la comparación en términos de impacto
entre FLO y SCA, concluimos que los mecanismos internos de cada ataque generan com-
portamientos diferentes en la actividad neuronal. FLO es mejor para alterar la actividad
neuronal en un periodo corto ya que afecta a múltiples neuronas en un instante concreto.
Por el contrario, SCA es más eficaz a largo plazo, ya que requiere más tiempo para generar
un impacto considerable, pero después, el impacto es mayor que FLO.

En la tercera publicación de la tesis (Article 3–Elsevier_COSE), presentamos Neuronal
Jamming (JAM) como un ciberataque neuronal centrado en la inhibición de la actividad
de un conjunto de neuronas durante una duración determinada, inspirado en enfermedades
neurodegenerativas consistentes en el mal funcionamiento de las neuronas o su muerte,
como el Parkinson y el Alzheimer. Este trabajo surgió naturalmente como continuación
de la publicación anterior con el objetivo de medir el impacto de los ciberataques basados
en inhibición, en contraste con los trabajos anteriores centrados en la estimulación de las
neuronas. El análisis de JAM desde una perspectiva biológica indicó que el aumento del
número de neuronas atacadas disminuyó tanto el número de spikes como la dispersión
temporal. Además, observamos un incremento en la variabilidad de la distribución de
estas métricas al aumentar el número de posiciones consecutivas atacadas, especialmente
en el número de spikes. En la red artificial, detectamos que incluso atacando unos pocos
nodos al azar se incrementaba drásticamente el número de pasos, no pudiendo salir del
laberinto en la mayoría de las situaciones. Comparando la correlación de Pearson entre las
métricas biológicas y artificiales, obtuvimos una baja correlación de alrededor del 60%. Este
resultado se explica por las restricciones de las consideraciones experimentales presentadas
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en el artículo. Sin embargo, el análisis individual por escenario demostró el alto impacto
que presenta JAM.

A continuación, comparamos el impacto de JAM y de FLO. En este contexto, primero
analizamos el impacto individual de FLO en ambos escenarios. En el biológico, los resul-
tados indicaron que realizar el ataque en posiciones posteriores tenía un menor impacto
ya que la actividad neuronal permanecía inalterada la mayor parte del tiempo. Además,
afectar a un mayor número de neuronas generaba un mayor daño. En la red artificial,
aumentar el número de nodos atacados incrementaba el impacto hasta una determinada
posición. Después de eso, y dado que el ratón estaba más cerca de la celda de salida, el
impacto disminuía ya que el ratón podía encontrar la salida por probabilidad. Compa-
rando ambos escenarios para FLO, obtuvimos una correlación de alrededor del 80% entre
el número de pasos y el número de spikes y la dispersión, concluyendo una relación sig-
nificativa entre los escenarios. Por último, comparamos los resultados de ambos ataques.
Como la metodología entre los ataques difiere en esta publicación, nos centramos en el
estudio de las correlaciones obtenidas. Así, apreciamos una relación más estrecha entre
ambos enfoques en FLO pero teniendo en cuenta las limitaciones anteriormente expuestas.
Este análisis del impacto causado por los ciberataques neurales se alinea con la RQ2.

La última publicación de la tesis doctoral (Article 4–ACM_CACM) presentó la definición e
implementación de una taxonomía de ciberataques neurales, relacionada con la RQ4. Este
trabajo amplió de forma natural el conjunto de ciberataques neuronales ya presentados en
las dos publicaciones anteriores de la tesis. Centrándonos en los nuevos ataques presentados
en este trabajo, Neuronal Selective Forwarding (FOR) consiste en inhibir secuencialmente
neuronas sin repeticiones a lo largo del tiempo, mientras que Neuronal Spoofing (SPO)
replica exactamente la actividad registrada en una ventana temporal anterior. Neuronal
Sybil (SYB) obliga a una neurona a tener el voltaje opuesto dentro del rango de voltaje
natural de una neurona. Por el contrario, Neuronal Sinkhole (SIN) consiste en estimular
neuronas de las primeras capas corticales con el objetivo de afectar a una neurona concreta
situada en una capa más profunda. Por último, Neuronal Nonce (NON) pretende atacar a
un conjunto de neuronas en un instante determinado, decidiendo aleatoriamente por cada
una de ellas su estimulación o inhibición.

Este trabajo representó su comportamiento, generando una intuición de su dinámica.
Posteriormente, se midió empíricamente el impacto de los ocho ciberataques en la actividad
espontánea atendiendo a la métrica del número de spikes. En particular, se estudió el
impacto de las cinco primeras y últimas posiciones del camino óptimo del laberinto para
destacar cuáles eran más dañinas a corto y largo plazo. Atendiendo al corto plazo, NON
logró una reducción aproximada del 12%, seguido de JAM con un 5%. Por el contrario,
SCA fue el más perjudicial a largo plazo, ofreciendo una reducción de alrededor del 9% de
los spikes, seguido de NON con un 8%.

V Conclusiones y trabajo futuro

En las últimas décadas, la rápida evolución de las BCIs ha generado un considerable avance
en la medicina, permitiendo una mejor detección de diversas enfermedades neurológicas.
También proporcionan capacidades de neuroestimulación para tratar enfermedades como
el Parkinson cuando un tratamiento basado en fármacos resulta ineficaz. Esta evolución
ha hecho que ganen popularidad en otros sectores como el del entretenimiento o los video-
juegos. Estos sistemas se están investigando también para su conexión a Internet o incluso
para permitir la comunicación directa entre cerebros. Este avance abre un panorama de
oportunidades para que nuevas empresas e ideas dominen un sector en alza que aspira a
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llegar a la población general en las próximas décadas.
Gracias a esta variabilidad en los escenarios de aplicación, existe una gran variedad de

tecnologías BCI centradas en la adquisición de datos neuronales o en la neuroestimulación,
diferenciadas también en función de su capacidad de invasividad cerebral. Centrándonos
en las BCIs de neuroestimulación invasiva, las técnicas actuales con aprobación de la FDA
para fines médicos son escasas y presentan limitaciones, como tener una resolución espacial
reducida o estar limitadas a determinadas enfermedades y regiones cerebrales. Partiendo
de esta base, las BCIs de nueva generación pretenden miniaturizar los electrodos y la tec-
nología para permitir el registro conjunto de datos neuronales y la estimulación e inhibición
de la actividad neuronal. Su objetivo final es democratizar las tecnologías BCI y acercarlas
a los consumidores finales, separándolas de los escenarios médicos.

Sin embargo, las anteriores tecnologías BCI no han sido concebidas bajo el prisma
de la ciberseguridad. En concreto, estas interfaces carecen de estándares y reglamentos
específicos, lo que dificulta la unificación de los mecanismos de seguridad necesarios para
su uso comercial. Tampoco existe una normativa de protección de datos que garantice el
buen uso de esta información sensible. Además, la tendencia de estas interfaces centradas
en la neuroestimulación, en la que empresas como Neuralink pretenden democratizar su
acceso, podría tener un impacto significativo en la seguridad de los usuarios.

Atendiendo a las preocupaciones y limitaciones anteriores, esta tesis doctoral ha anali-
zado el estado del arte en materia de ciberseguridad en las BCIs, detectando una carencia
de trabajos que aborden este tema. Aunque algunos trabajos cubren parcialmente ciertos
aspectos de la ciberseguridad en este campo, son escasos y no ofrecen una visión integral
del problema. En base a ello, este trabajo analiza en primer lugar los ataques, los impactos
y las contramedidas tanto para el ciclo de vida de las BCIs como para los despliegues arqui-
tectónicos comunes para estos sistemas. Además, esta tesis ha identificado las tendencias
y los retos a los que se enfrentarán estos sistemas en un futuro próximo. Estos hallazgos
han ofrecido una respuesta a la RQ1, permitiendo también completar el primer objetivo
específico de la tesis.

Posteriormente, este trabajo propuso la definición de ciberataques neuronales como
amenazas que pueden afectar a la actividad neuronal espontánea, avanzando en la lite-
ratura en términos de ciberseguridad en BCIs. Están motivados por las vulnerabilidades
identificadas en dispositivos de neuroestimulación de nueva generación que los atacantes
podrían explotar para causar daño a los usuarios de BCI (véase el segundo objetivo de la
tesis). En esta dirección, esta investigación presentó primero Neuronal Flooding y Neuronal
Scanning como ciberataques capaces de estimular maliciosamente las neuronas, analizando
su impacto en una simulación neuronal. Dado que, en ese momento, se carecía de topologías
neuronales realistas, esta tesis entrenó una CNN para resolver el problema particular de un
ratón que tiene que salir de un laberinto determinado, trasladando la topología resultante
a un simulador neuronal. Esta decisión fue motivada por evidencia existente que presenta
una relación entre algunos aspectos del funcionamiento y la estructura de las CNNs y la
corteza visual. Ambos ciberataques fueron eficaces para reducir la actividad neuronal. Es-
tos resultados ofrecieron una respuesta a la RQ3 y RQ4 y ayudaron a avanzar hacia una
respuesta para la RQ2 para los ataques basados en la estimulación neuronal.

Con estos resultados en consideración, esta tesis presentó posteriormente un tercer
ciberataque neuronal, Neuronal Jamming, que inhibe la actividad neuronal de un conjunto
de neuronas objetivo durante un periodo de tiempo. Este trabajo comparó su impacto con
el de Neuronal Flooding, considerando también su relación con la capacidad de decisión
del ratón para salir del laberinto. Los resultados obtenidos sugirieron una correlación
sustancial entre el impacto de estos ciberataques en la actividad neuronal y la capacidad
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de tomar decisiones, aunque se necesita más investigación en esta dirección. A partir de
estos resultados, este trabajo ofreció nuevos hallazgos para responder a la RQ2 sobre los
ciberataques que aplican inhibición neuronal.

Por último, esta investigación presentó una taxonomía de ocho ciberataques neuronales,
de los cuales cinco eran novedosos. Para cada uno de ellos, esta tesis proporcionó una
definición, una descripción de su funcionamiento interno y un análisis de su impacto a
corto y largo plazo. A partir de ahí, este trabajo indicó cuáles eran más adecuados para
causar un efecto inmediato y cuáles causaban un daño más significativo a largo plazo. Así,
estos resultados respondieron a la RQ2 ya que permitieron medir el impacto causado por
un amplio conjunto de comportamientos de ciberataques neurales y ayudaron a completar
todos los objetivos de la tesis.

En resumen, esta tesis doctoral ha recogido en primer lugar el conocimiento existente
en la literatura relativa a la ciberseguridad en BCIs. Además, este trabajo ha avanzado
sustancialmente el estado del arte, proponiendo nuevos ciberataques capaces de afectar a
la actividad neuronal espontánea, validando su impacto en un escenario lo más realista
posible al tejido neuronal biológico.

Como trabajo futuro, esta tesis identifica en primer lugar la necesidad de analizar
exhaustivamente las vulnerabilidades existentes tanto en las soluciones BCI actuales como
en las emergentes, lo que ayudará a desarrollar soluciones prácticas de ciberseguridad
para productos específicos. Además, es necesario cubrir los retos identificados en términos
de interoperabilidad y extensibilidad de las soluciones BCI y abarcar las oportunidades
actuales en cuanto a la regulación de los datos y los mecanismos de seguridad.

Además, esta investigación detecta la necesidad de ampliar el análisis de los cibera-
taques neuronales, estudiando cómo otros ciberataques tradicionales del ámbito de infor-
mática podrían adaptarse al escenario neurológico. Esta tesis también considera funda-
mental identificar aspectos de las enfermedades neurodegenerativas que puedan ayudar a
ampliar esta área de investigación en ciberseguridad. Por otro lado, este trabajo iden-
tifica la necesidad de evaluar el impacto de los ciberataques neuronales sobre topologías
neuronales más realistas. Así, primero permitiría medir las diferencias entre atacar pobla-
ciones neuronales excitatorias o inhibitorias. Además, el aumento del número de neuronas
y de la complejidad de la red permitiría obtener más conclusiones sobre su efecto en el
tejido neuronal biológico natural.

Una vez que se obtiene una amplia comprensión de estos ciberataques, este trabajo
pone de manifiesto una oportunidad para detectar y mitigar estos ciberataques. Para ello,
la inteligencia artificial, como las técnicas de machine learning y deep learning, podrían
ser útiles para su implementación en nuevas generaciones de dispositivos BCI, ayudando a
reducir o incluso mitigar el daño causado por estas amenazas e incluso las emergentes.

Una mejor intuición del impacto de los ciberataques neuronales en condiciones más
realistas podría ser vital para recrear el comportamiento y efecto de las enfermedades
neurodegenerativas conocidas. Así, ciertos ciberataques podrían beneficiar los efectos de
condiciones particulares, estableciendo una relación entre ciberataques y enfermedades.
Además, si se consigue este hito, la investigación podría centrarse en predecir, basándose
en la actividad neuronal espontánea, la presencia de enfermedades neurodegenerativas
específicas, incluso en las primeras fases. Estos avances podrían beneficiar positivamente
a la investigación médica y tener un impacto masivo en los pacientes neurológicos.

xxx PhD Thesis – Sergio López Bernal



Bibliography

[1] M. A. Lebedev and M. A. L. Nicolelis, “Brain-Machine Interfaces: From Basic Science
to Neuroprostheses and Neurorehabilitation,” Physiological Reviews, vol. 97, no. 2, pp.
767–837, Apr 2017.

[2] W. Zhao, E. J. Van Someren, C. Li, X. Chen, W. Gui, Y. Tian, Y. Liu, and X. Lei,
“Eeg spectral analysis in insomnia disorder: A systematic review and meta-analysis,”
Sleep Medicine Reviews, vol. 59, p. 101457, 2021.

[3] G. Giannakakis, D. Grigoriadis, and M. Tsiknakis, “Detection of stress/anxiety state
from eeg features during video watching,” in 2015 37th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp.
6034–6037.

[4] M. Parastarfeizabadi and A. Z. Kouzani, “Advances in closed-loop deep brain stimu-
lation devices,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, p. 79,
Aug 2017.

[5] C. J. Hartmann, S. Fliegen, S. J. Groiss, L. Wojtecki, and A. Schnitzler, “An update on
best practice of deep brain stimulation in parkinson’s disease,” Therapeutic Advances
in Neurological Disorders, vol. 12, p. 1756286419838096, Jan 2019.

[6] C. A. Edwards, A. Kouzani, K. H. Lee, and E. K. Ross, “Neurostimulation Devices
for the Treatment of Neurologic Disorders,” Mayo Clinic Proceedings, vol. 92, no. 9,
pp. 1427–1444, 2017.

[7] Y. Luo, Y. Sun, X. Tian, X. Zheng, X. Wang, W. Li, X. Wu, B. Shu, and W. Hou,
“Deep brain stimulation for alzheimer’s disease: Stimulation parameters and potential
mechanisms of action,” Frontiers in Aging Neuroscience, vol. 13, 2021.

[8] M. A. L. Nicolelis, “Actions from thoughts,” Nature, vol. 409, no. 6818, pp. 403–407,
2001.

[9] M. Ahn, M. Lee, J. Choi, S. Jun, M. Ahn, M. Lee, J. Choi, and S. C. Jun, “A
Review of Brain-Computer Interface Games and an Opinion Survey from Researchers,
Developers and Users,” Sensors, vol. 14, no. 8, pp. 14 601–14 633, Aug 2014.

PhD Thesis – Sergio López Bernal xxxi



[10] V. Khurana, M. Gahalawat, P. Kumar, P. P. Roy, D. P. Dogra, E. Scheme, and
M. Soleymani, “A survey on neuromarketing using eeg signals,” IEEE Transactions
on Cognitive and Developmental Systems, 2021.

[11] A. Jalaly Bidgoly, H. Jalaly Bidgoly, and Z. Arezoumand, “A survey on methods and
challenges in eeg based authentication,” Computers & Security, vol. 93, p. 101788,
2020.

[12] A. Saboor, F. Gembler, M. Benda, P. Stawicki, A. Rezeika, R. Grichnik, and
I. Volosyak, “A Browser-Driven SSVEP-Based BCI Web Speller,” in 2018 IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC). Miyazaki, Japan:
IEEE, Oct 2018. ISBN 978-1-5386-6650-0 pp. 625–630.

[13] M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, and M. A. L. Nicolelis, “A Brain-
to-Brain Interface for Real-Time Sharing of Sensorimotor Information,” Scientific Re-
ports, vol. 3, no. 1, p. 1319, Dec 2013.

[14] M. Pais-Vieira, G. Chiuffa, M. Lebedev, A. Yadav, and M. A. L. Nicolelis, “Building
an organic computing device with multiple interconnected brains,” Scientific Reports,
vol. 5, no. 1, p. 11869, Dec 2015.

[15] R. A. Ramadan and A. V. Vasilakos, “Brain computer interface: control signals re-
view,” Neurocomputing, vol. 223, pp. 26–44, Feb 2017.

[16] B. Jarosiewicz and M. Morrell, “The rns system: brain-responsive neurostimulation
for the treatment of epilepsy,” Expert Review of Medical Devices, vol. 18, no. 2, pp.
129–138, 2021.

[17] E. Musk and Neuralink, “An integrated brain-machine interface platform with
thousands of channels,” bioRxiv, 2019. [Online]. Available: https://www.biorxiv.org/
content/early/2019/08/02/703801. DOI: 10.1101/703801

[18] S. A. Wirdatmadja, M. T. Barros, Y. Koucheryavy, J. M. Jornet, and S. Balasub-
ramaniam, “Wireless optogenetic nanonetworks for brain stimulation: Device model
and charging protocols,” IEEE Transactions on NanoBioscience, vol. 16, no. 8, pp.
859–872, 2017.

[19] I. Martinovic, D. Davies, and M. Frank, “On the feasibility of side-channel attacks with
brain-computer interfaces,” in Proceedings of the 21st USENIX Security Symposium.
Bellevue, WA: USENIX, 2012. ISBN 978-931971-95-9. ISSN 0733-8716 pp. 143–158.

[20] M. Frank, T. Hwu, S. Jain, R. T. Knight, I. Martinovic, P. Mittal, D. Perito,
I. Sluganovic, and D. Song, “Using EEG-Based BCI Devices to Subliminally Probe
for Private Information,” in Proceedings of the 2017 on Workshop on Privacy in the
Electronic Society - WPES ’17. New York, New York, USA: ACM Press, 2017. ISBN
9781450351751 pp. 133–136.

[21] T. Denning, Y. Matsuoka, and T. Kohno, “Neurosecurity: security and privacy for
neural devices,” Neurosurgical Focus, vol. 27, no. 1, p. E7, 2009.

[22] M. Ienca, “Neuroprivacy, neurosecurity and brain-hacking: Emerging issues in neural
engineering,” Bioethica Forum, vol. 8, no. 2, pp. 51–53, 2015.

https://www.biorxiv.org/content/early/2019/08/02/703801
https://www.biorxiv.org/content/early/2019/08/02/703801


[23] M. Ienca and P. Haselager, “Hacking the brain: brain–computer interfacing technology
and the ethics of neurosecurity,” Ethics and Information Technology, vol. 18, no. 2,
pp. 117–129, Jun 2016.

[24] Q. Li, D. Ding, and M. Conti, “Brain-Computer Interface applications: Security and
privacy challenges,” in 2015 IEEE Conference on Communications and Network Se-
curity (CNS). San Francisco, CA, USA: IEEE, Sep 2015. ISBN 9781467378765 pp.
663–666.

[25] C. Camara, P. Peris-Lopez, and J. E. Tapiador, “Security and privacy issues in im-
plantable medical devices: A comprehensive survey,” Journal of Biomedical Informat-
ics, vol. 55, pp. 272–289, Jun 2015.

[26] L. Pycroft and T. Z. Aziz, “Security of implantable medical devices with wireless
connections: The dangers of cyber-attacks,” Expert Review of Medical Devices, vol. 15,
no. 6, pp. 403–406, Jul 2018.

[27] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and efficient neural
simulator,” eLife, vol. 8, p. e47314, Aug. 2019. DOI: 10.7554/eLife.47314

[28] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural
Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[29] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, aug
2019. ISBN 1492032646





Publications composing

the PhD Thesis





1
Survey of Cybersecurity on Brain-Computer Interfaces

Title: Security in Brain-Computer Interfaces:
State-of-the-Art, Opportunities, and Future Challenges.

Authors: Sergio López Bernal, Alberto Huertas Celdrán,
Gregorio Martínez Pérez, Michael Taynnan Barros,
Sasitharan Balasubramaniam.

Journal: ACM Computing Surveys
JIF: 14.324 D1 (2021)
Publisher: ACM
Volume: 54
Number: 1
Pages: 35
Year: 2021
Month: Jan
DOI: 10.1145/3427376
Status: Published

Abstract
Brain-Computer Interfaces (BCIs) have significantly improved the patients’ quality of life
by restoring damaged hearing, sight, and movement capabilities. After evolving their appli-
cation scenarios, the current trend of BCI is to enable new innovative brain-to-brain and
brain-to-the-Internet communication paradigms. This technological advancement gener-
ates opportunities for attackers, since users’ personal information and physical integrity
could be under tremendous risk. This work presents the existing versions of the BCI life-
cycle and homogenizes them in a new approach that overcomes current limitations. After
that, we offer a qualitative characterization of the security attacks affecting each phase of
the BCI cycle to analyze their impacts and countermeasures documented in the literature.
Finally, we reflect on lessons learned, highlighting research trends and future challenges
concerning security on BCIs.

Keywords

Brain-computer interfaces · BCI · Cybersecurity · Privacy · Safety

PhD Thesis – Sergio López Bernal 3

https://dx.doi.org/10.1145/3427376




11

Security in Brain-Computer Interfaces:
State-of-the-Art, Opportunities, and Future Challenges

SERGIO LÓPEZ BERNAL, University of Murcia, Departamento de Ingeniería de la Información y las
Comunicaciones
ALBERTO HUERTAS CELDRÁN, Waterford Institute of Technology, Telecommunication Software
and Systems Group and Communication Systems Group CSG, Department of Informatics IfI, University of
Zurich UZH
GREGORIO MARTÍNEZ PÉREZ, University of Murcia, Departamento de Ingeniería de la Información
y las Comunicaciones
MICHAEL TAYNNAN BARROS, University of Essex, School of Computer Science and Electronic
Engineering and Tampere University, CBIG/BioMediTech in the Faculty of Medicine and Health Technology
SASITHARAN BALASUBRAMANIAM, Waterford Institute of Technology, Telecommunication
Software and Systems Group and RCSI University of Medicine and Health Sciences, FutureNeuro,
SFI Research Centre for Chronic and Rare Neurological Diseases

Brain-Computer Interfaces (BCIs) have significantly improved the patients’ quality of life by restoring dam-
aged hearing, sight, and movement capabilities. After evolving their application scenarios, the current trend
of BCI is to enable new innovative brain-to-brain and brain-to-the-Internet communication paradigms. This
technological advancement generates opportunities for attackers, since users’ personal information and phys-
ical integrity could be under tremendous risk. This work presents the existing versions of the BCI life-cycle
and homogenizes them in a new approach that overcomes current limitations. After that, we offer a qualita-
tive characterization of the security attacks affecting each phase of the BCI cycle to analyze their impacts and
countermeasures documented in the literature. Finally, we reflect on lessons learned, highlighting research
trends and future challenges concerning security on BCIs.

This work has been supported by the Irish Research Council under the government of Ireland post-doc fellowship (Grant
No. GOIPD/2018/466), by the Science Foundation Ireland (SFI) under Grant No. 16/RC/3948 and co-funded under the Euro-
pean Regional Development Fund and by FutureNeuro industry partners, by the European Union’s Horizon 2020 Research
and Innovation Programme through the Marie Skłodowska-Curie under Grant Agreement No. 839553, by Armasuisse S+T
with project CYD-C-2020003, by the University of Zürich UZH, and by the European Union Horizon 2020 Research and
Innovation Program under grant agreement No. 830927, namely the H2020 Concordia Project.
Authors’ addresses: S. L. Bernal and G. M. Perez, University of Murcia, Departamento de Ingeniería de la Información
y las Comunicaciones, Murcia, Spain; emails: {slopez, gregorio}@um.es; A. H. Celdrán, Waterford Institute of Technol-
ogy, Telecommunication Software and Systems Group, Waterford, Ireland and Communication Systems Group CSG, De-
partment of Informatics IfI, University of Zurich UZH, CH 8050 Zürich, Switzerland; email: ahuertas@tssg.org; M. T.
Barros, University of Essex, School of Computer Science and Electronic Engineering, Essex, UK, Tampere University,
CBIG/BioMediTech in the Faculty of Medicine and Health Technology, Tampere, Finland; email: michael.barros@tuni.fi;
S. Balasubramaniam, Waterford Institute of Technology, Telecommunication Software and Systems Group, Waterford, Ire-
land, RCSI University of Medicine and Health Sciences, FutureNeuro, the SFI Research Centre for Chronic and Rare Neu-
rological Diseases, Dublin, Ireland; email: sasib@tssg.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/12-ART11 $15.00
https://doi.org/10.1145/3427376

ACM Computing Surveys, Vol. 54, No. 1, Article 11. Publication date: December 2020.

Journal Article 1

PhD Thesis – Sergio López Bernal 5



11:2 S. L. Bernal et al.

CCS Concepts: • Security and privacy → Domain-specific security and privacy architectures;

Additional Key Words and Phrases: Brain-computer interfaces, BCI, cybersecurity, privacy, safety

ACM Reference format:
Sergio López Bernal, Alberto Huertas Celdrán, Gregorio Martínez Pérez, Michael Taynnan Barros, and
Sasitharan Balasubramaniam. 2020. Security in Brain-Computer Interfaces: State-of-the-Art, Opportunities,
and Future Challenges. ACM Comput. Surv. 54, 1, Article 11 (December 2020), 35 pages.
https://doi.org/10.1145/3427376

1 INTRODUCTION
Brain-Computer Interfaces (BCI) emerged in the 1970s intending to acquire and process users’
brain activity to perform later specific actions over external machines or devices [87]. After sev-
eral decades of research, this functionality has been extended by enabling not only neural activity
recording but also stimulation [167]. Figure 1 describes a simplification of the general components
and processes defining a common BCI cycle in charge of recording and stimulating neurons [1,
26, 59], later presented in Section 2. It is important to note that these phases are not standard, so
we include the most common ones used in the literature. The clockwise direction, indicated in
blue, shows the process of acquiring neural data, and the counterclockwise represents the stim-
ulation one, which is highlighted in red. Regarding the neural data acquisition, neurons interact
with each other, producing neural activity, either based on previously agreed actions, such as con-
trolling a joystick, or generated spontaneously (phase 1 of Figure 1). This activity is acquired by
the BCI and transformed into digital data (phase 2). After that, data is analyzed by the BCI data
processing system to infer the action intended by the user (phase 3). Finally, applications execute
the intended action, enabling the control of external devices. These applications can present op-
tional feedback to the users, which allows the generation of new neural activity. However, the
counterclockwise direction of Figure 1 starts in phase 4, where applications define the intended
stimulation actions to perform. Phase 3 processes this action to determine a firing pattern con-
taining all the essential parameters required by the BCI to stimulate the brain. Finally, the firing
pattern is sent to the BCI, which is in charge of stimulating specific neurons belonging to one or
more brain regions and is dependent on the technology used. In a nutshell, a BCI can be a uni-
directional or bidirectional communication system between the brain and external computational
devices. Unidirectional communications are when they either acquire data or stimulate neurons,
while bidirectional communications are when they perform both tasks [139].

From the security perspective, BCIs are in an early and immature stage. The literature has not
considered security a critical aspect of BCIs until recent years, where terms such as neurosecurity,
neuroprivacy, neuroconfidentiality, brain-hacking, or neuroethics have emerged [31, 58, 59]. Exist-
ing works of the literature have detected specific security attacks affecting BCI integrity, confiden-
tiality, availability, and safety, but they do not perform a comprehensive analysis and miss relevant
concerns [17, 87, 96, 163, 165]. More specifically, the use of neurostimulation BCIs in clinical envi-
ronments introduces severe vulnerabilities that can have a significant impact on the user’s health
condition [136]. BCIs already existing on the market would benefit from the implementation of ro-
bust security solutions, reducing their impact, particularly in clinical environments. Furthermore,
the expansion of BCIs to new markets, e.g., video games or entertainment, generates considerable
risks in terms of data confidentiality [87, 96, 163, 165]. In this context, users’ personal information,
such as thoughts, emotions, sexual orientation, or religious beliefs, are under threats if security
measures are not adopted [59, 96, 165]. Besides, contemporary BCI approaches, such as the use of
silicon-based interfaces, introduce new security challenges due to the increase in the volume of
acquired data and the use of potentially vulnerable technology [121]. The technological revolution
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Fig. 1. General functioning of a bidirectional BCI. The clockwise flow indicated with a blue arrow represents
the neural data acquisition process, while the counterclockwise flow represented with a red arrow models
the brain stimulation.

of recent years, combined with movements such as the Internet of Things (IoT), brings an accelera-
tion in the creation of new devices lacking security standards and solutions based on the concepts
of security-by-design and privacy-by-design [17, 60, 137, 163, 165]. This revolution also brings to
reality prospective and disruptive scenarios, where we highlight as examples the direct communi-
cations between brains, known as Brain-to-Brain (BtB) or Brainets [67, 126, 127, 184], and brains
connected to the Internet (Brain-to-Internet (BtI)), which will require significant efforts from the
security prism.

Once summarized the functioning of BCIs and their security status, the scope of this article lies
in analyzing the security issues of software components that intervene in the processes, working
phases, and communications of BCIs. Besides, this work considers the security concerns of infras-
tructures, such as computers, smartphones, and cloud platforms, where different BCI architectures
are deployed. It is also important to note that, despite this article indicates overall impacts over the
brain and the user’s physical safety, the main focus of this work is to perform a security analysis
from a technological point of view. Aligned with these aspects, and to the best of our knowledge,
this article is the first work that exhaustively reviews and analyses the BCI field from the security
point of view. Since these aspects have not been studied in depth before and BCI technologies are
still immature, this line of work has a particular interest in a medium to long term. However, this
area of knowledge is relevant nowadays, since devices already available on the market need to be
protected against attacks.

In this context, Section 2 focuses on analyzing the security issues related to the design of the BCI
life-cycle. We unify the existing heterogeneous BCI life-cycles in a novel and common approach
that integrates recording and stimulation processes. Once proposed the new life-cycle design ap-
proach, we review the attacks applicable to each phase of the cycle, the impact generated by the
attacks and the countermeasures to mitigate them, both documented in the literature and detected
by us. After highlighting the security issues related to the BCI design, Section 3 reviews the in-
herent cyberattacks, impacts, and countermeasures affecting current BCI deployments scenarios.
This section identifies the security issues generated by the devices implementing each life-cycle
phase’s responsibilities, as well as the communication mechanisms and the application scenarios.
The last main contribution of this article is Section 4, where we give our vision regarding the trend
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Fig. 2. Bidirectional BCI functioning cycle representing, in black, the common phases for neural data ac-
quisition and brain stimulation. (Left side) Representation, in blue, of the processes performed and the data
transferred by each phase of the neural data acquisition process. This cycle can be seen as a closed-loop
process, because it starts and ends at the same phase. (Right side) Representation, in red, of the processes
and transitions of each phase making up the stimulation process.

of BCI and the security challenges that this evolution will generate in the future. Finally, Section 5
presents some conclusions and future work.

2 CYBERATTACKS AFFECTING THE BCI CYCLE, IMPACTS,
AND COUNTERMEASURES

This section reviews the different operational phases of BCIs detected in the literature, known as
the BCI cycle, and homogenizes them in a new approach shown in Figure 2. After that, we survey
the security attacks affecting each phase of the cycle, their impacts, and the countermeasures doc-
umented in the literature. We present as well unexplored opportunities in terms of cyberattacks,
and countermeasures affecting each phase.

The literature has proposed different configurations of the BCI cycle. However, the existing
versions only consider the signal acquisition process, missing the stimulation of neurons. These
solutions present various classifications of the BCI cycle, as some do not consider the generation of
brain signals as a phase, or group several phases in only one, without providing information about
their roles [26, 59]. Other solutions, as proposed in References [6, 59, 87, 172], are confusing due to
they define as new phases, transitions, and data exchanged between different stages. In terms of
applications, some authors define a generic stage of applications [1, 26, 87, 148] while others deal
with the concept of commands sent to external devices [10, 17, 18, 25, 54, 163, 171]. Also, just a few
works define the feedback sent by applications to users [10, 17, 18, 25, 59, 87, 163, 171, 172]. To
homogenize the BCI cycle and address the previously missing or confusing points, we present a
new version of the BCI cycle with five phases (with clearly defined tasks, inputs, and outputs) that
consider both acquisition and stimulation capabilities. Figure 2 represents our proposal, where the
clockwise direction corresponds to the brain signal acquisition process. The information and tasks
concerning this functioning are indicated in blue. In contrast, the stimulation process is indicated
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in the counterclockwise direction, starting from phase 5, and, in each phase, the information and
tasks are identified in red.

According to the neural acquisition process (clockwise direction in Figure 2), phase 1 focuses on
the generation of brain signals. Generated data contain the user’s intention to perform particular
tasks; for example, controlling an external device. This phase can be influenced by external stimuli,
producing modifications in the regular neural activity. In phase 2, the brain waves are captured by
electrodes using a wide variety of technologies, such as Electroencephalography (EEG) or Func-
tional Magnetic Resonance Imaging (fMRI). Raw analog signals containing the user’s intention are
then transmitted to phase 3, where data processing and conversion are required. In particular, this
phase performs an analog-to-digital conversion procedure to allow further processing of the data.
One of the main goals of this phase is to maximize the Signal-to-Noise Ratio (SNR), which compares
the level of the target signal to background noise level to obtain the original signal as accurately
as possible. Phase 4 processes the digital neural data to decode the user’s intended action, where
relevant features are calculated and selected from the neural data. After that, different models (e.g.,
classifiers, predictors, regressors) or rule-based systems determine the intended action [25, 148].
The action finally arrives at applications in phase 5, which execute the action. Applications can also
send optional feedback to the user to generate brain signals and thus new iterations of the cycle.

Regarding the stimulation process (counterclockwise direction in Figure 2), the loop starts in
phase 5, where it is specified the stimulation action in a general way (e.g., stimulate a particular
brain region to treat Alzheimer’s disease). This intended action is transmitted to phase 4, where
this input is processed by different techniques, such as Machine Learning (ML), to generate a
firing pattern that contains high-level information about the stimulation devices to be activated,
the frequencies used and the temporal planning. Phase 3 intends to transform the firing pattern
received, indicated in a general fashion, to specific parameters related to the BCI technology used.
For example, the identification of neurons to stimulate or the power and voltage required for the
process. Phase 2 transmits these stimulation parameters to the stimulation system, that is in charge
of the physical stimulation of the brain. After this process, the brain generates neural activity as
a response, which can also be acquired by the BCI to measure the state of the brain after each
stimulation process. At this point, an alternation between brain stimulation and signal acquisition
is possible, moving from one direction of Figure 2 to the other.

Before reviewing the attacks, impacts and countermeasures of each phase of the BCI cycle, it is
essential to accurately define the concept of security, which refers to the “protection of information
and information systems from unauthorized access, use, disclosure, disruption, modification, or
destruction to provide integrity, confidentiality and availability” [149]. The concepts of integrity,
confidentiality and availability, together with the concept of safety, are used in this section as
metrics to evaluate the impact of security attacks against BCI systems. The standard definitions of
these concepts are the following:

• Integrity: “protection against unauthorized modification or destruction of information. A
state in which information has remained unaltered from the point it was produced by a
source, during transmission, storage, and eventual receipt by the destination” [76].

• Confidentiality: “preservation of authorized restrictions on access and disclosure, includ-
ing means for protecting personal privacy and proprietary information” [149].

• Availability: “property that data or information is accessible and usable upon demand by
an authorized person” [149].

• Safety: “freedom from conditions that can cause death, injury, occupational illness, damage
to or loss of equipment or property, or damage to the environment” [143]. This work consid-
ers the safety concept from the physiological, psychiatric, and psychological perspectives.
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Table 1. Definition of the Attacks Detected for the BCI Cycle

Attack Description
Adversarial attacks
[38, 90]

Presentation of intentionally crafted inputs to an ML system to disrupt its normal functioning
and output.

Misleading stimuli
attacks [40, 79, 96]

Presentation of malicious sensory or motor stimuli to users aiming to generate a specific neural
response.

Buffer Overflow
attacks [16, 109, 147]

Access to out-of-bounds memory spaces due to insecure software implementations. They take
advantage of operations over memory buffers whose boundaries are not well managed.

Cryptographic
attacks [58, 59]

Exploit vulnerabilities in the elements that define a system, such as algorithms, protocols or
tools. A variety of techniques focused on evading the security measures of cryptographic
systems.

Firmware attacks
[13, 173]

Extract or modify the firmware of a device, a critical piece of software that controls its
hardware.

Battery drain attacks
[24, 135]

Consume the battery of a device, reducing its performance or even making it permanently
inaccessible.

Injection attacks
[105, 134]

Present an input to an interpreter containing particular elements that can modify how it is
parsed, taking advantage of a lack of verification of the input.

Malware attacks
[77, 154, 177]

Use of hardware, software or firmware aiming to gain access over computational devices to
perform malicious actions intentionally.

Ransomware attacks
[2, 37]

Encrypt users’ data and demand later an economic ransom to decipher it.

Botnet attacks [4, 92] Use of botnets, networks of infected devices controlled and coordinated by an attacker, to
perform particular attacks directed to specific targets.

Sniffing attacks [5] Acquisition of private information by listening to a communication channel. When the data is
not encrypted, attackers have access to the content of the whole communication.

Man-in-the-middle
attacks [163]

Alteration of the communication between two entities, making the extremes believe that they
are communicating directly between each other.

Replay attacks
[77, 166]

Retransmission of previously acquired data to perform a malicious action, such as the
impersonation of one of the legitimate participants of the communication.

Social engineering
attacks [47, 49]

Psychological manipulation to gain access over restricted resources. An example is phishing
attacks, based on the impersonation of a legitimate entity in digital communication.

Spoofing attacks
[159, 166]

Masquerade an entity of the communication, transmitting malicious data. Frequent spoofing
attacks in network communications are, among others, IP spoofing and MAC spoofing.

At this point, it is essential to note that in this document, the safety concept refers to the preser-
vation of the physical integrity of BCI users, not focusing on the conservation of objects or the
environment. To better understand the attacks and countermeasures later discussed in this sec-
tion, Table 1 offers a brief description of the attacks affecting BCI, whereas Table 2 describes their
countermeasures. For each phase of the BCI cycle, we detail the particularities of these attacks and
countermeasures.

Figure 3 indicates the attacks, impacts, and countermeasures described in this section. As can be
seen, each attack is represented by a color that associates the impacts it generates and the coun-
termeasures to mitigate it. For each impact included in the figure, it includes a simplified version
of the BCI cycle. Those phases of the cycle marked in red indicate impacts detected in the litera-
ture for that specific phase, whereas the blue color indicates our contribution. Besides, the attacks,
impacts and countermeasures marked with references have been proposed in the literature, while
those without references are our contribution. It is important to note that this figure highlights
the limitations exposed by the literature, as can be appreciated by the volume of our contribu-
tions. To simplify the image, we have synthesized most of the safety impacts into a general entry
“Cause physical damage,” describing the specific impacts over users’ health in detail throughout
the section.

ACM Computing Surveys, Vol. 54, No. 1, Article 11. Publication date: December 2020.

Survey of Cybersecurity on Brain-Computer Interfaces

10 PhD Thesis – Sergio López Bernal



Security in BCI: State-of-the-Art, Opportunities, and Future Challenges 11:7

Table 2. Definition of the Countermeasures Detected for the BCI Cycle

Countermeasure Description
Training sessions, demos
and serious games [59]

Initiatives to increase the awareness of the users about the risks of technology.

User notifications [24] Alert the users in case an attack is detected, to take part in the defence (e.g., stop using the
device).

Directional antennas
[186]

Antennas that radiate or receive the energy mainly in particular directions, aiming to
reduce interference.

Analysis of the medium
[59]

Sensing of the communication medium to detect abnormal behavior.

Low transmission power
[170]

Reduction of transmission power to avoid the interception of the communication by
malicious entities.

Frequency and channel
hopping [46, 186]

Wireless communication models based on pseudo-random hopping patterns previously
known by sender and receiver.

Spread spectrum
[166, 170, 186]

Transmission of the information in a broader bandwidth to avoid interference in the
wireless medium.

Access control
mechanisms
[24, 164, 165]

Means of detecting and preventing unauthorized access to particular resources.

Privilege management
[110–112]

Assign privileges to different groups of users based on roles.

Whitelists and blacklists
[106]

List of entities, such as systems or users, that are allowed or forbidden, respectively, to
perform specific actions.

Cryptographic
mechanisms [8]

Use of encryption and decryption techniques to protect the privacy of data, since
unprotected information can be accessed and modified by attackers.

Differential privacy
[60, 90]

Cryptographic mechanism based on the addition of noise to the data aiming to suppress
sensitive aspects, accessible when combined with a large amount of a user’s data.

Homomorphic
encryption [90]

Cryptographic mechanism allowing the computation of mathematical operations over
ciphered data, generating an encrypted result.

Functional encryption
[164, 165]

Cryptographic mechanism where having a secret key allows to learn a function of
encrypted data without revealing the data itself.

Authenticity verification
[8]

Ensure that the data we are accessing, or the endpoint we are communicating, is who it
claims to be.

Legitimacy verification
[8]

Review if a malicious software application has replaced a legitimate one.

Feature limitation [123] Ensure that any software only implements the specific functionality for which it was
intended.

Periodic updates [37] Correct detected vulnerabilities and include new functionalities to reinforce the existing
countermeasures.

Robust programming
languages [110]

Choose the most adequate languages taking into consideration their strengths and
weaknesses.

Compilation techniques
and options [111]

Specific capabilities of compilers to protect out of bounds accesses to the device memory or
CPU registers.

Application hardening
[50]

Modification of an application to make it more resistant against attacks, such as the
obfuscation of the application code.

Segmented application
architectures [147]

Isolation of architectures and systems, establishing different containers and security groups
to communicate with each other.

Sandboxing [104] Isolate the execution of different programs, allowing its protection against attacks.
Antivirus [159] Software focused on the prevention, detection, and elimination of malware attacks. Modern

antivirus offer protection for a wide variety of threats.
Malware visualization
[41]

Technique focused on the analysis of software binaries in a graphical way to detect
anomalous malware patterns.

(Continued)
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Table 2. Continued

Countermeasure Description
Quarantine of devices [4] Isolation of infected or potentially infected software, to avoid further propagation and

infection.
Backup plans [3] Recurrent copy of data stored in a different location to allow its recovery in case of data loss.
Defense distillation [90] Creation of a second ML model based on the original, with less sensitivity regarding input

perturbations and offering smoother and more general results.
Data sanitisation [66] Rejection of samples that can produce a negative impact on the model, preprocessing and

validating all input containing adversarial information.
Adversarial training [44] Inclusion of adversarial samples in the training process to allow the recognition of attacks

in the future.
Monitoring systems [15] Capture and analyze the behavior of the entities within a system and their communications.
Anomaly detection [24] Detection of odd behaviors on systems that can potentially correspond to an attack

situation.
Firewall [159] Cybersecurity system that only allows incoming or outgoing network communications

previously authorized.
IDS [159] Analysis of the network activity to identify potentially damaging communications aiming

to disrupt the system.
Communication
interruption [73]

Detention of an active communication to mitigate the impact of an attack if there is
evidence of its presence.

Input validation [134] Analysis and preprocessing of inputs presented to a system to suppress potential causes of
failure.

Randomization [165] Change of existing data in a way that does not follow a deterministic pattern and prevents
privacy leakage.

BCI Anonymizer [17] Anonymization of brain signals acquired from the brain to be shared without exposing
users sensitive information.

2.1 Phase 1. Brain Signals Generation
2.1.1 Attacks. Considering the neural data acquisition flow, this first phase focuses on the brain

processes that generate neural activity, which can be influenced by external stimuli. The litera-
ture has detected misleading stimuli attacks [40, 79, 96], a mechanism to alter the brain signals
generation by presenting intentionally crafted stimuli to BCI users. To understand these attacks,
it is important to introduce some concepts. Event-related Potentials (ERP) are neurophysiological
responses to a cognitive, sensory, or motor stimulus, detected as a pattern of voltage variation
[26]. Within the different types of Event-related Potentials (ERPs), Evoked Potentials (EP) focus
on sensory stimuli and can be divided into two categories, Visual Evoked Potentials (VEPs) and Au-
ditory Evoked Potentials (AEPs), related, respectively, with visual and auditory external stimuli.
Specifically, P300 is a Visual Evoked Potential (VEP) detected as an amplitude peak in the Elec-
troencephalography (EEG) signal about 300ms after a stimulus, extensively used due to its quick
response [158].

On the one hand, Martinovic et al. [96] used the P300 potential to obtain private information
from test subjects and demonstrated misleading stimuli attacks. Visual stimuli were presented in
the form of images, grouped as follows: four-digit PIN codes, bank ATMs and credit cards, the
month of birth, and photos of people. The objective of the experiment was to prove that users
generate a higher peak in the P300 potential when faced with a known stimulus and, therefore,
be able to extract private information. The authors used the Emotiv EPOC 14-channel headset
[36], a commercial BCI EEG device, showing that information leakage, measured in information
entropy, was 10%–20% of the overall information, and could be increased to approximately 43%. On
the other hand, Frank et al. [40] demonstrated the possibility of performing subliminal misleading
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stimuli attacks. To perform the experiments, the same ERP concept with P300 potentials was used.
In this work, the authors showed information hidden within the visual content projected to 29
subjects, in the form of stimuli with a duration of 13.3 milliseconds, imperceptible to the human
eye. The study used EEG devices of the brands NeuroSky [118] and Emotiv [34]. We consider that
the previous works are relevant to highlight the importance of security in BCI, and additional
experiments with a higher number of users are required.

The literature has documented some well-known methods to present stimuli to users and ana-
lyze their neural responses [17, 96, 163]. For example, to study the neural activity generated after a
question in a lie detection test [79]. Although these methods do not represent attacks themselves,
they are an opportunity to develop new misleading stimuli attacks against BCIs, defined as follows:

• Oddball Paradigm: specific target stimuli, hidden between a sequence of common non-target
stimuli, would generate peaks in ERP. For example, to differentiate a known face among
several unknown ones.

• Guilty Knowledge Test: the response generated by familiar stimuli can be differentiated from
the generated by unfamiliar elements. This principle has been used for lie detection.

• Priming: a stimulus can generate an implicit memory effect that later influences other
stimuli.

Despite the comprehensive study in the literature on Auditory Evoked Potentials (AEPs), there
are no specific works, to the best of our knowledge, describing attacks over auditory stimuli. How-
ever, Fukushima et al. [42] described that inaudible high-frequency sounds could affect brain activ-
ity. We detect that this scenario generates new opportunities for attackers, since the generation of
inaudible auditory stimuli does not require close interaction with the victim, helping the attacker
to remain undetected.

Regarding neural stimulation, this phase represents the result of the stimulation process within
the brain. Based on a lack of literature defining taxonomies of attacks over the brain, we identify
two main attack categories during neurostimulation. The first category consists of taking con-
trol of the stimulation process to cause neural tissue damage. These attacks may reproduce or
worsen the secondary effects often present during the treatment of neurological conditions, such
as Parkinson’s disease, either by over-stimulation actions or by preventing the treatment. The fea-
sibility of these attacks is supported by References [48, 128], who indicated that the adverse effects
of neurostimulation are related to the parameters and patterns of the stimulation. Additionally, we
identify another modality of attack in this category, based on recreating known neurological con-
ditions if there is an existing neurostimulation device with access to the regions naturally affected
by those diseases. As an example, we identify the possibility of recreating neurodegenerative dis-
eases, such as Parkinson’s and Alzheimer’s diseases, based on a deterioration of cerebral tissue,
and epileptic seizures. Although these attacks are nowadays just theoretical [11], the advance of
prospecting BCI technologies like Neuralink [116], could result in neurostimulation systems that
can cover various parts of the brain, thus introducing these threats.

The second category of attacks focuses on inducing an effect or perception in the user. It is
well known that neurostimulation can cause multiple psychiatric and psychological impacts, such
as mood variations, depression, anxiety, or suicidal thoughts, as later indicated in Section 2.1.2.
An attacker could magnify these effects with malicious stimulation parameters to take advantage
of the user. As an example, the attack could aim to reduce the patient’s inhibition to ease the
extraction of private information. This situation introduces the possibility of social engineering
attacks to BCI, where the attacker would not require sophisticated social techniques to manipulate
its victims psychologically.
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Table 3. Summary of the Most Common Side Effects During FDA-approved Neurostimulation

Technology Condition Brain
region Neurological side effects Psychiatric/psychological side

effects

DBS

Parkinson’s
disease

STN

Akinesia, cramping in the face or hand, dysarthria,
dysphagia, eyelid apraxia, gait disturbance,

hypersalivation, impaired vision, incontinence,
learning and memory difficulties, paresthesia, postural
instability, speech disturbance, lack of verbal fluency,
vegetative symptoms, weakness [23, 30, 33, 48, 157]

Anxiety, apathy, cognitive
disturbance, confusion, depression,

hallucination, submanic state
[23, 33, 48]

GPI Similar to STN [48] Anxiety, depression, suicidal
thoughts [33, 48]

VIM Dysphagia, fine motor disturbance, speech
disturbance [157]

Essential
tremor VIM Dysaesthesia, dysarthria, gait disturbance, paresthesia,

speech disturbance [23, 33]

Dystonia GPI Gait disturbance, paresis, speech disturbance, tetanic
muscle contractions, visual deficits [23, 33]

Anxiety, cognitive disturbance,
confusion, hallucination [23]

Obsessive-
compulsive

disorder
VC/VS,

NAc
Depression, operant conditioning,

reward processing alteration,
suicidal thoughts, suicide [102]

RNS Epilepsy Seizure
origin Death, change in seizures, hemorrhage, infection [117] Anxiety, depression, suicide,

suicididal thoughts [117]

2.1.2 Impacts. It is important to note that the misleading stimuli attacks detailed for this phase
have only been conducted against data confidentiality [40, 79], aiming to extract sensitive data
from BCI users. However, we consider that they can also affect BCI integrity, availability, and
safety. These stimuli can alter the normal functioning of this phase, generating malicious inputs
for the next stages that can derive on disruptions of the service or incorrect actions aiming to cause
physical damage to users. Specifically, Landau et al. [79] identified that misleading stimuli attacks
performed during a medical diagnose, such as a photosensitive epilepsy test in which different vi-
sual stimuli are presented, can derive in a misdiagnosis, affecting the users’ safety. We also identify
as feasible that malicious stimuli, both perceptible or subliminal, can affect the users’ mood.

From the perspective of neurostimulation, the attacks above can affect users’ health differently
according to their previously existing diseases, impacting their physical and psychological safety.
The issues related to different BCI technologies are detailed in Section 2.2, indicating general im-
pacts over the brain in this phase. Table 3 presents the most common side effects during particular
neurostimulation therapies. As can be seen, performing an attack during the stimulation process
can aggravate or even generate a wide range of negative impacts on BCI patients. Additionally,
the authors of References [135, 136] highlighted common issues to neurological diseases, such as
tissue damage, rebound effects, and denial of stimulation (also affecting the service availability).
Besides, they identified that an alteration of voltage, frequency, pulse width, or electrode contact
used to stimulate the brain could modify the volume of cerebral tissue activated, inducing non-
desired effects in the surrounding structures depending on the electrode location and stimulation
technique. Pycroft et al. [135] also indicated that an attack on neurostimulation could induce a
patient’s thoughts and behavior. In Reference [95], the authors highlighted that attacks on neu-
rostimulation can prevent patients from speaking or moving, cause brain damage or even threaten
their life, while the authors of Reference [79] indicated the user’s frustration if the result of the
process is not adequate.

Pycroft et al. [136] indicated potential attacks and harms against neurostimulation patients.
First, they detected that an overstimulation procedure could cause tissue damage, independently
of the type of stimulation and medical condition. For Parkinson’s disease, an attacker could apply

ACM Computing Surveys, Vol. 54, No. 1, Article 11. Publication date: December 2020.

Survey of Cybersecurity on Brain-Computer Interfaces

14 PhD Thesis – Sergio López Bernal



Security in BCI: State-of-the-Art, Opportunities, and Future Challenges 11:11

a ~10Hz stimulation over the STN region to produce hypokinesia or akinesia. In patients with
essential tremor, where the ventral intermediate nucleus (VIM) is stimulated, both an increase
of voltage and a decrease of frequency could dangerously derive in exacerbated tremor. Finally,
a variation in the stimulation parameters during the treatment of obsessive-compulsive disorder
could generate alterations of reward processing or operant conditioning.

Based on the above, safety impacts are the most damaging in this phase, presenting a risk of
irreversible physical and psychiatric issues. In addition, taking advantage of the victim’s psycho-
logical status, it could ease social engineering attacks as well. The attacker could aim to reduce or
inhibit the patient’s mental defense mechanisms, acquiring sensitive information, thus impacting
data confidentiality. However, more worrisome would be to take advantage of the victim’s mental
status, in which the patient unconsciously accedes to undesired acts, such as gambling money,
buying unnecessary products, committing a crime, or participating in non-consensual sexual
intercourse.

2.1.3 Countermeasures. Focusing on the countermeasures to mitigate misleading stimuli at-
tacks, multiple works [24, 79, 135, 136] identified general measures to raise the awareness of BCI
users, such as spreading the risks of these technologies among clinicians and patients and the
education of the users in these technologies. This is especially interesting, since humans usually
are the weakest element of a security system. In particular, Ienca et al. [59] indicated that specific
training sessions could be beneficial to protect users against potentially unsafe stimuli related
to authentication methods and banking-related information. Besides, the inclusion of demos and
serious games in commercial BCI devices may educate them on the risks of these technologies.
However, these countermeasures can only be applied when the user is aware of the stimuli. Be-
cause of that, we consider that misleading stimuli attacks can be reduced if BCIs are complemented
with external systems that monitor the stimuli presented and give users the possibility to evaluate
if the content is appropriate. For example, by analyzing if the multimedia contents showed to users,
such as images or videos, have been maliciously modified [15, 175], even if they are subliminal.
Additionally, we propose using predictive models based on anomaly detection systems, aiming to
detect an attack in its early stage and deploy mechanisms to mitigate them.

2.2 Phase 2. Neural Data Acquisition and Stimulation
2.2.1 Attacks. This second phase focuses on the interaction of BCI devices with the brain to

acquire neural data or perform its stimulation. Regarding data acquisition, the authors of Refer-
ences [79, 87] identified the use of a combination of replay and spoofing attacks in which previous
signals from the BCI user, signals from other users, or synthetic signals can impersonate the le-
gitimate brain waves. We detect the applicability of these attacks to stimulation systems, where
an attacker can force specific stimulation behaviors based on previous actions. One possible out-
come of this control can be an increase in the voltage delivered to the patient’s brain [95]. Besides,
the authors of References [59, 79] detected the use of jamming attacks against the neural data ac-
quisition process, transmitting electromagnetic noise to the medium. Based on Vadlamani et al.
[170], we also identify this problem in neural stimulation, where jamming attacks can override the
legitimate signals emitted by the BCI electrodes if they are transmitted with enough power.

2.2.2 Impacts. Regarding the impacts produced by the previous attacks, Li et al. [87] identified
that replay and spoofing attacks affect both data integrity and availability, being able to disrupt
the acquisition process. Landau et al. [79] highlighted that these attacks could interfere with
clinical diagnosis procedures, replacing the legitimate brain signals by malicious ones, concluding
in misdiagnosis, and producing either an absence of treatment or an unnecessary one on healthy
patients. We identify that these attacks, applied to the stimulation scenario, can disrupt the
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stimulation process or acquire and modify the stimulation pattern used by the BCI to maliciously
stimulate the neurons, affecting data integrity, data and service availability, and the patient’s
safety. Focusing on jamming attacks, an attacker can aim to prevent the electrodes from capturing
brain signals due to the noise transmitted [59, 79], affecting their availability and safety. We detect
that jamming attacks can also affect neurostimulation scenarios, where signals with enough
power can override the legitimate ones, affecting the integrity and availability of the data, as well
as the patient’s safety during stimulation actions.

Apart from the impacts derived from the previous attacks, it is important to note that each
specific BCI technology presents specific risks according to their invasiveness and functioning,
and thus the impact generated by an attack differs. To analyze this situation, we select some of
the most used BCI technologies used to acquire neural data or stimulate the brain. For each one of
them, we address specific considerations to evaluate their impact.

Regarding the issues related to acquisition technologies, it is necessary to consider both their
temporal and spatial resolutions. We identify that a low temporal resolution in acquisition tech-
nologies presents concerns on data and service availability, since the devices transmit a reduced
amount of data that can be affected more easily by electromagnetic interference and, especially,
jamming attacks. Besides, this situation can also be beneficial for replay and spoofing attacks, since
attackers have more time to prepare and send malicious data. A high spatial resolution can impact
on data confidentiality, allowing attackers to have access to more sensitive neural data. It is wor-
thy to note that attacks on technologies such as Functional Magnetic Resonance Imaging (fMRI) or
Magnetoencephalography (MEG) can potentially have a higher economic impact due to the high
cost of these technologies compared to others like EEG [82, 137]. Nevertheless, EEG is the most
studied acquisition technology from the security perspective, due to its wide availability outside
clinical environments, highlighting the feasibility of attacks such as misleading stimuli attacks or
jamming attacks.

Although the literature has documented some potential security impacts for acquisition tech-
nologies, the impact of neurostimulation technologies on patient’s health has been studied in a
more detailed way, specifically in the field of Implantable Medical Devices (IMDs). Because of that,
we first introduce the most common stimulation technologies nowadays to review their specific
impact later, mainly addressing safety issues.

Focusing on the specific impacts of neurostimulation technologies, Deep Brain Stimulation
(DBS) is the most studied one due to its invasiveness, where Medtronic is one of the most pop-
ular brands commercializing open-loop DBS devices [128]. The side effects of this method have
been extensively studied in the literature, where some of them have previously been presented
in Table 3 for the treatment of particular conditions. According to Pycroft et al. [136], the use of
Deep Brain Stimulation (DBS) with high charge densities can cause tissue damage. Furthermore,
an increase or decrease in the stimulation frequency can have a considerable impact on its efficacy,
even reversing the stimulation effect. Finally, an alteration of emotion and affect processing can
occur during DBS as side-effects, such as pathological crying or inappropriate laughter, having a
distressing impact.

Moving to Transcranial Magnetic Stimulation (TMS), Polanía et al. [129] indicated that pulses
applied to particular areas could induce suppression of visual perception or speech arrest, which
serves as an opportunity for attackers. León et al. [84] highlighted that Transcranial Magnetic
Stimulation (TMS) could produce side-effects such as headache and neck pain, being epileptic
seizures possible but improbable. The side effects of Transcranial Electrical Stimulation (tES) usu-
ally are mild, such as skin tingling, itching, and redness [114]. Nevertheless, this technique can
have indirect effects on the stimulation of non-neuronal elements, such as peripheral nerves, cra-
nial nerves, or retina. Because of that, the stimulation is limited to maximum tolerable doses [89].
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Besides, in patients with depression, Direct Current Stimulation (tDCS) can derive to mania and
hypomania cases [99]. It is worthy to note that the side effects described above can naturally arise
in controlled environments where clinicians have strict control over the procedure. However, if
attackers alter the therapy, they could recreate or amplify malicious conditions, generating a clear
impact on patients’ health.

The Neuropace RNS is a closed-loop neurostimulation system for treating drug-resistant
epilepsy, performing both neural data acquisition and neurostimulation procedures. It presents
the advantage of delivering stimulation only when detecting the beginning of seizure activity, re-
ducing secondary effects. Nevertheless, it introduces potential challenges than can be used by an
attacker to impact its users’ safety [128]. First, we identify that the closed-loop behavior could
induce, in both clinicians and patients, a reduction of the perception of risks, assuming that the
device is working correctly. Furthermore, since the device presents autonomous capabilities, an
attacker could disrupt its behavior, without the knowledge of the user, to generate an impact on
data confidentiality, service availability, and safety.

2.2.3 Countermeasures. Regarding the countermeasures to detect and mitigate replay and
spoofing attacks, Landau et al. [79] proposed, for data acquisition, the use of anomaly detection
mechanisms to detect modified inputs, as well as the accuracy improvement of acquisition de-
vices. Besides, we propose a mechanism able to disable the electrodes not required for the current
application usage and avoid potential risks, such as the acquisition of P300 in brain signals. This
action could be performed automatically by the BCI system or based on the patient’s or clinician’s
decision. Taking into account neural stimulation, and specifically for IMDs, external devices to au-
thenticate and authorize the stimulation actions can be used [24]. The authors of References [46,
170, 186] documented several detection mechanisms and countermeasures related to the mitiga-
tion of jamming attacks. All detection procedures are based on an analysis of the medium to detect
abnormal behavior, as identified for neural data acquisition by Ienca et al. [59]. Specifically, Landau
et al. [79] proposed using an ensemble of classifiers to detect the addition of noise to the benign
input. As proposed countermeasures, Vadlamani et al. [170] identified the use of low transmission
power as a possible solution to harden the detection of the legitimate transmission, and the use
of directional antennas oriented to the brain to avoid the jamming. The use of frequency hopping
[186] and channel hopping [46] after a particular duration of time also aim to reduce the impact
of these attacks. We detect that the use of directional antennas is also a possible solution for re-
play and spoofing attacks. Finally, it is worthy to note that the mitigation of the previous impacts
focused on user’s safety is the consequence of mitigating the attacks spotted against BCI devices.

In the scenario of closed-loop neurostimulation systems, we identify as essential to have infor-
mation about the behavior of the device, from both acquisition and stimulation procedures. These
feedback mechanisms would allow to externally analyze the status of the brain and the stimula-
tion decisions. Another proposal is the use of anomaly detection systems, included in the device,
to identify unusual stimulation parameters, or an absence of treatment when a seizure occurs, no-
tifying the user. This second approach could be more energy preserving, and the election of the
strategy would depend on the use case.

2.3 Phase 3. Data Processing and Conversion
2.3.1 Attacks. This phase performs the data processing and conversion tasks required to allow

neural data and stimulation actions to be ready for subsequent stages. Although the literature has
not detected security problems in this phase, according to the aspects indicated by Bonaci et al.
in References [17, 18], we identify malware attacks as possible against this phase, taking control
over the BCI. These attacks are candidates to affect both acquisition and stimulation processes,
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impacting the tasks performed in this phase. In particular, we identify that malware can disrupt the
analog-to-digital conversion that occurs during neural data acquisition, as well as the translation
of firing patterns to particular stimulation devices. We also detect that jamming attacks applied to
the previous phase for data acquisition can impact this phase, since a distorted input signal with
enough noise can be difficult to filter and thus propagate this signal to subsequent phases.

2.3.2 Impacts. In this context, we identify that malware attacks have an impact on both neural
data acquisition and stimulation, where attackers alter or override the data received from previous
phases, generating malicious data sent to subsequent phases. That is, the analog data recorded
during neural data acquisition or the firing pattern used in neurostimulation processes. These
attacks can gather the sensitive data managed in this phase, both analog and digital, and send it
to the attackers, affecting data confidentiality. For example, information about private thoughts or
neurological treatments. In terms of data and service availability, both acquisition and stimulation
are potentially vulnerable to malware that avoids data transmission to subsequent phases of the
cycle. Malware affecting integrity and availability is also a threat against users’ physical safety,
generating damaging stimulation patterns or dangerous actions sent to applications. Besides, the
impacts and countermeasures described in the first phase of the acquisition flow for jamming
attacks are also applicable to the current stage.

2.3.3 Countermeasures. Regarding the countermeasures to mitigate attacks affecting data con-
fidentiality, Chizeck et al. [26] defined a U.S. patent application entitled “Brain-Computer Interface
Anonymize” that proposes a technology capable of processing neural signals to eliminate all non-
essential private information [17, 165]. As a result, sensitive information is never stored in the BCI
device or transmitted outside. We identify this method as especially relevant in this phase, as it
is the first stage after the BCI’s acquisition process. Although the authors do not provide details
about techniques or algorithms to understand how raw signals are processed, they indicate that
this process can only be performed on hardware or software within the device itself, and not on ex-
ternal networks or computer platforms, as a way to ensure the privacy of the information. Besides,
Ienca et al. [60] proposed the use of differential privacy to improve the security and transparency
of data processing.

The countermeasures to mitigate malware depend on their type and behavior. We consider the
use of antivirus software and Intrusion Detection Systems (IDS) as alternatives for the protec-
tion of individual devices, based on Reference [79]. Besides, the authors of References [159, 177]
considered perimeter security mechanisms, such as firewalls, responsible for analyzing all incom-
ing and outgoing communication of the device. We also propose using Machine Learning (ML)
anomaly detection systems to identify potential malware threats [24, 141]. Finally, Chakkaravarty
et al. [154] reviewed current persistent malware techniques able to bypass common countermea-
sures and proposed mitigation techniques, such as sandboxing [104], application hardening [50],
and malware visualization [41]. It is essential to highlight that the countermeasures applicable for
this phase highly depend on the device constraints that implement this phase, which is typically
the BCI device (see Section 3).

2.4 Phase 4. Decoding and Encoding
2.4.1 Attacks. Decoding and encoding is the phase focused on identifying the action intended

by the users in neural data acquisition or the specification of the neural firing pattern in neu-
rostimulation. Malware attacks have been identified in the literature by Bonaci et al. [17, 18] from
the signal acquisition perspective. Specifically, they identified that attackers could use malware
to either override the functioning of this phase or to implement additional malicious algorithms.
Besides, we identify that malware attacks can also be applied to the stimulation flow, avoiding or
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disrupting a firing pattern’s generation. Besides, we identify that adversarial attacks can also be
applied to this phase for both acquisition and stimulation tasks, taking advantage of the classifi-
cation algorithms used. These attacks affect all types of ML models, and, because of that, they are
currently an open challenge [38]. Liu et al. [90] detected the possibility of poisoning attacks, where
attackers introduce crafted adversarial samples to the data, aiming to change its distribution. Eva-
sion attacks aim to create samples that evade detection systems, whereas impersonate attacks focus
on adversarial samples that derive in incorrect classification of the legitimate ones. Finally, two
attack models exist according to the knowledge about the model [44]. In white-box attacks, adver-
saries know the model, while in black-box attacks, they only have access to the model through a
limited interface.

2.4.2 Impacts. The previously described attacks generate particular impacts on BCI. On the
one hand, malware has an impact on data integrity and availability, as it can alter or ignore the re-
ceived data from previous phases, and override the output of the current one. That is, disrupt the
intended action sent to BCI applications in the acquisition process, such as preventing the control
of a wheelchair or changing its direction, or the firing pattern in neural stimulation, enabling a
wide variety of attacks as described in Section 2.1. Besides, malware affects the availability of the
ML process by the alteration of the trained model or the ML algorithm. From a data confidentiality
perspective, malware can access the features used in the ML training phase, as well as gather
information about the model and the algorithm used. Malware also affects users’ safety, as the
previous integrity and availability impacts derive in malicious actions and firing patterns that
affect the integrity of users, such as causing neural damage or inducing particular psychological
states. On the other hand, adversarial attacks also affect data integrity and availability, as the
introduction of malicious samples aiming to disrupt the model can alter or avoid the generation of
actions and firing patterns. Shokri et al. [153] demonstrated that ML models are sensitive against
adversarial attacks, aiming to detect if a sample exists in the model’s training dataset. Based on
that, an attacker may extract sensitive users’ data, such as previous intended actions or used
patterns during stimulation actions. Taking into account data confidentiality, Landau et al. [79]
detected that a malicious entity taking control of the output of this phase could access the user’s
intention. Finally, the use of malicious samples, as is the case of poisoning attacks, alter the ML
system, deriving in safety impacts for both cycle directions.

2.4.3 Countermeasures. To mitigate the attacks on the ML training phase affecting integrity and
availability, we have identified several techniques proposed in the literature for generic adversarial
attacks, that can serve as an opportunity to improve the security of BCI. First, data sanitization is
useful to reject samples containing adversarial information, thus disrupting the model. Jagielski
et al. [66] proposed a similar approach against poisoning attacks applied to regression techniques,
where noise and outliers are suppressed from the training dataset. Nevertheless, it does not prevent
attackers from crafting samples similar to those generated by the legitimate distribution. Coun-
termeasures such as adversarial training or defense distillation have been presented in this context.
However, both have limitations, as they depend on the samples used during the training and can
be broken using black-box attacks and computationally expensive attacks based on iterative op-
timization [44, 90]. Goodfellow et al. [44] also proposed architecture modifications, based on the
improvement of ML models to be more robust, but this derives in models difficult to train that
have degradation in the performance when used in non-adversarial situations. Liu et al. [90] doc-
umented the integration of techniques to mitigate the attacks, called ensemble method. They also
indicated two methods that can apply in both training and testing phases: differential privacy and
homomorphic encryption [56, 90, 165]. Finally, it is worthy to note that the countermeasures to
mitigate malware attacks in the previous phase can apply to the current one.
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2.5 Phase 5. Applications
2.5.1 Attacks. From the data acquisition context, applications perform in the physical world

the actions intended by users through their neural activity. These actions can range from the
interaction with a computer or smartphone, to the control of a robotic limb. From the perspec-
tive of neural stimulation, applications are the entry point of the information transmitted to the
brain, like sensory stimuli in prosthesis or cognitive enhancement. In this section, we consider at-
tacks on applications, without analyzing their communication with external systems, addressed in
Section 3.1.

Considering the issues of this phase, spoofing attacks over BCIs have been detected in the lit-
erature, where an attacker creates malicious applications identical to the original and make them
available in app stores [8]. The authors of References [17, 18, 87] identified malware attacks as
a threat in BCI. Besides, Pycroft et al. [136] identified that the use of consumer devices, such as
smartphones, generates new risks and security problems. Specific considerations about malware
are the same as detailed in Sections 2.3 and 2.4. Moreover, we have found several opportunities
related to cyberattacks performed against applications. In particular, we detect security misconfig-
uration issues, Buffer Overflow (BO) attacks, and injection attacks over applications. However, the
detailed analysis of these particular attacks is out of the scope of this work, and we only address
general aspects related to BCI.

2.5.2 Impacts. Landau et al. [79] identified multiple risks on BCI applications with the inde-
pendence of any attack. They detected that an attacker could interfere with the user’s ability to
use the device, impacting its availability. They also detected confidentiality concerns regarding
the identification of users by their neural data, illustrating a scenario in which an attacker extracts
EEG data from the application and compares it with the EEG database of a hospital, identifying the
user and accessing his or her medical records. This identification can derive in a discrimination
situation based on the belonging of specific groups, such as religious beliefs. Besides, most BCI
development APIs offer full access over the information and do not implement limitations on the
stimuli presented to users, generating confidentiality issues [17, 40, 87, 96, 163, 165]. Finally, all
the attacks affecting this phase can force applications to send malicious stimuli or actions, causing
physical harm [8].

Considering the impact of the previous attacks, applications created by spoofing attacks affect
both data integrity and confidentiality, as they can present malicious stimuli to obtain sensitive
neural information, such as thoughts or beliefs [8]. In neurostimulation scenarios, we identify
that these fraudulent applications could entirely modify the firing patterns used to stimulate the
patient, generating a high impact over safety. More particularly, these applications could induce
psychological states in the victim, making them more willing to gamble, or even generate adverse
effects such as anxiety and depression. Based on that, the attacker could take advantage of these
mental states, injecting in-app advertisements to earn money from the victim.

Malware attacks impact the integrity of the applications by altering their services and capabili-
ties, such as disabling the encryption of information. Besides, they can compromise applications’
confidentiality, gaining access to sensitive information such as medical records and user profiles
used during neurostimulation treatments. Concerning the availability of the application, malware
attacks can derive in denial of service over the application, impacting in processes such as control-
ling prosthetic limbs or wheelchairs.

We detect that misconfiguration attacks present data integrity issues, where attackers take ad-
vantage of the system to gain unauthorized access, such as weak access control mechanisms. Data
confidentiality issues are also present, for example, on configuration files that have static prede-
fined passwords, allowing attackers to gain access to users’ private data. Applications’ availability
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problems are also possible, as a misconfiguration issue can serve as a first step to disrupt the normal
behavior of the BCI application.

Moving to injection attacks, they can produce data loss, modification, and corruption, affecting
the integrity of applications [105, 134]. In terms of confidentiality, they can produce the disclosure
of sensitive information to unauthorized parties [105, 134], such as insurance companies aiming to
select the best candidates for their products [8]. Availability can be affected by a denial of access
over an authentication system, or producing crash, exit or restart actions on the applications,
disrupting vital processes such as clinical neurostimulation [107, 134].

Buffer Overflow (BO) attacks can derive in the execution of unauthorized code or commands,
where an attacker can alter the normal functioning of the application or access to sensitive infor-
mation [110]. Furthermore, they can also aim to bypass protection mechanisms by the execution of
code outside the scope of the program’s security policy. These actions can affect the data integrity,
confidentiality, and availability of the application [111].

2.5.3 Countermeasures. It is necessary to verify the legitimacy of the applications and ensure
sufficient control of the app stores to mitigate spoofing attacks [8]. In that regard, Landau et al.
[79] proposed the use of applications developed by authorized organizations to ensure their trust-
worthiness. When it comes to malware attacks, the same countermeasures proposed for the Data
processing & conversion phase also apply for applications. That is, the use of antivirus, firewall,
Intrusion Detection Systems (IDS), and anomaly detection systems to identify and mitigate the
attacks. Furthermore, Takabi et al. [164, 165] proposed the use of access control mechanisms over
the information to restrict its access and thus mitigate confidentiality impacts. They also indicated
the use of randomization and differential privacy. Besides, they proposed the integration of homo-
morphic encryption to operate with encrypted information combined with functional encryption to
access only to a subset of the information.

As an opportunity for BCI, we identify some preventive actions against misconfiguration at-
tacks defined by the Open Web Application Security Project (OWASP) [123], such as the use of
minimal platforms with only necessary features, components, libraries, and software to reduce
the probability of misconfiguration issues. Moreover, a periodic review and update of configura-
tion parameters are also beneficial as part of the management process of applications. It is also
necessary to create segmented application architectures that offer a division between components
and defines different security groups, using Access Control Lists (ACLs).

Concerning BO, it is important to use programming languages that protect against these at-
tacks, as well as the use of compilers with detection mechanisms. [147]. Developers must validate
all inputs and follow well practice rules when using memory (e.g., verification of the boundaries
of buffers). Moreover, sensitive applications must be ran using the lowest privileges possible and
even isolated using sandbox techniques [110–112]. To detect injection attacks, both static and dy-
namic analysis of applications’ source code have been proposed [134]. For their mitigation, it is
necessary to escape all special characters included in the input [107, 134]. Multiple solutions have
been proposed, such as the use of whitelists and blacklists [106], the use of safe languages and APIs
containing automatic detection mechanisms [105, 134], the use of sandboxing techniques to define
strict boundaries between processes [107], the definition of different permissions on the system
[106], and error messages with minimal but descriptive details.

3 SECURITY ISSUES AFFECTING THE BCI DEPLOYMENTS
This section reviews the different architectural deployments of the BCI cycle found in the
literature. After that, we group them into two main families, characterized by the BCI cycle
implementation and its application scenario. In contrast to Section 2, where the security analysis
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is independent of the deployment, this section reviews the state of the art of existing attacks
affecting the devices implementing each phase of the BCI cycle, as well as their impacts and
countermeasures. New opportunities, in terms of attacks and countermeasures, missed by the
literature, are also highlighted in this section. Figure 4 represents both architectural deployments
defined, Local BCIs, and Global BCIs, indicating the communication between their elements and
the phases of the BCI cycle that each element implements according to the type of deployment.

3.1 Local BCI
3.1.1 Architecture Description. Local BCI deployments highlight by managing the neural data

acquisition and stimulation processes of single users. This architecture typically deploys the BCI
phases between two physical devices, as represented in Figure 4. The first one, identified as BCI
device, focuses on the neural acquisition and stimulation procedures (phases 1 and 2 of the BCI
cycle). In contrast, BCI applications (phase 5) run in a Near Control Device (NCD), a PC or smart-
phone that controls the BCI device using either a wired or wireless communication link. Phases
3 and 4 of the cycle can be implemented equally in both devices, where manufacturers make the
final decision. At this point, it is essential to note that alternative designs can arise due to specific
requirements of the deployments, such as the presence of multiple users. Moreover, we consider
fully implantable BCIs within this architecture, since they require an external device for its con-
figuration and verification.

3.1.2 Examples of Deployments. This kind of architectural deployment is the most commonly
implemented for consumer-grade BCIs, where commercial brands like NeuroSky or Emotiv fo-
cus on scenarios such as gaming and entertainment [1, 96, 100]. Neuromedical scenarios also use
this approach, where an Near Control Device (NCD) placed in the clinical environment manages
the acquisition and stimulation processes. This section specifically addresses the issues detected
in physical BCI devices, the inherent problems of the NCD, and those related to the communica-
tion between BCI and NCD. At this point, it is important to note that the attacks, impacts, and
countermeasures detected for the BCI cycle are also applicable.

3.1.3 Attacks. Focusing on BCI devices, Ballarin et al. [8] identified attacks affecting the de-
vice firmware throw a configuration link (e.g., USB ports), having an impact on data integrity and
confidentiality, also generating disruptions on the system. Pycroft et al. [136] identified the possi-
bility of injecting malicious firmware updates. Moreover, we identify that these attacks can serve
as an opportunity to generate safety problems. Ienca et al. [58, 59] documented cryptographic at-
tacks, indicating that Cody’s Emokit project was able to crack the encryption of data directly from
the Emotiv EPOC, a consumer-grade BCI. They detected that these attacks affect data integrity
and confidentiality. Marin et al. [95] detected that current Implantable Medical Devices (IMDs)
lack robust security mechanisms. Yaqoob et al. [178] identified that neurostimulation devices lack
encryption and usually define default passwords, impacting integrity and confidentially, easing
unauthorized access to sensitive data. We also identify that they produce service availability and
safety issues if they can modify the data.

The authors of References [24, 135] highlighted that attackers could focus on draining the
battery of the device and thus affect both service availability and users’ physical safety. In
neurostimulation systems, losing the battery capacity would result in a loss of treatment, where
the disease symptoms would reappear. Due to this, some IMDs include rechargeable batteries,
reducing the risks of depleting them, and thus defining more robust solutions. It is also essential to
consider that, in non-rechargeable systems, surgery is required to replace the batteries, increasing
the risk of both physical and psychological safety issues.
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Fig. 3. Relationship between the attacks, impacts, and countermeasures over the BCI cycle. The phases of
the cycle colored in red for each impact represent issues documented in the literature, while those marked
in blue are our contribution. The attacks, impacts and countermeasures followed by references have been
documented in the literature, and those without a cite represent our contribution.
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Fig. 4. Representation of Local BCI and Global BCI deployments, indicating the communication between
their elements and the stages of the BCI cycle that each element implements according to the architectural
deployment.

The authors of References [17, 136] described the possibility of hijacking attacks, referred to
as brainjacking, where the attacker acquires complete access over the device by any means. These
attacks generate an impact on all four security impact metrics. Finally, Pycroft et al. [135] identified
general confidentiality impacts than can be shared by multiple attacks. They identified that close-
loop IMDs use physiological data acquired by the BCI to improve the stimulation procedures or
drug delivery. However, this sensitive data can be used by attackers to acquire information about
the patient’s health condition. Furthermore, an attacker can acquire sensitive information stored
in the device, such as stimulation settings, personal data, or battery status, useful to perform new
attacks.

Considering NCDs, Ballarin et al. [8] identified social engineering and phishing attacks against
BCIs, focused on the acquisition of users’ authentication credentials, affecting data confidentiality.
Although BCI applications do not require a connection to the Internet, the NCD can be connected.
Therefore, we detect that these systems can suffer malware attacks and, specifically, ransomware
[2] and those based on botnets [74, 77, 159], with an impact on the integrity and availability of
data and applications contained in the NCD, as well as users’ safety. In particular, botnets also
generate data confidentiality issues, since attackers have control over the system. Moreover, we
detect sniffing attacks on NCDs taking advantage of networking configuration and protocols, such
as MAC flooding, DHCP attacks, ARP spoofing, or DNS poisoning [5], affecting service and data
integrity, confidentiality, and availability.

Focusing on the communication between BCI devices and NCDs, Sundararajan et al. [163] stud-
ied the security of the commercial-grade Emotiv Insight, which implemented Bluetooth Low En-
ergy (BLE) in its version 4.0 to communicate with a smartphone that contains the application of-
fered by Emotiv. They successfully performed man-in-the-middle attacks over the Bluetooth Low
Energy (BLE) link, being able to intercept and modify information, force the BCI to perform un-
wanted tasks, and conduct replay attacks affecting, therefore, integrity, confidentiality, and avail-
ability of sensitive data. The literature has documented further integrity and confidentiality im-
pacts, where attackers can intercept and modify sensitive data even using encryption [8, 79, 87,
95, 135, 163, 164]. These attacks are related to the cryptographic attacks described above, where
weak encryption of the data stored in the device can derive in man-in-the-middle attacks. Finally,
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it is important to note that the attacks related to user data and credentials have a higher impact if
multiple users use the system.

3.1.4 Countermeasures. To some of the previous attacks, different countermeasures have been
proposed. Related to firmware attacks, Ballarin et al. [8] indicated the encryption of the firmware,
as well as an authenticity verification throw hash or signature. Pycroft et al. [136] highlighted pe-
riodic firmware updates and the use of authorization mechanisms for these updates. The authors
of References [24, 135, 136] identified the use of access control mechanisms placed in external de-
vices with proximity to the patient and anomaly detection systems over the BCI device usage to
face potential threats such as battery drain attacks. In particular, for these attacks, rechargeable
batteries are recommended to avoid a surgical replacement. The authors of Reference [79] pro-
posed, as general countermeasures, the regulation of neurotechnology as a way to standardize its
manufacturing processes, as well as a reduction of BCI training process, which tends to frustrate
the users, being less willing to cooperate. These measures are complementary with those docu-
mented by Reference [135], which considered that BCI devices should keep logs and access events,
including mechanisms for reporting bugs.

The use of robust cryptographic mechanisms and the latest protocol versions are determinant
to avoid cryptographic attacks, man-in-the-middle attacks, and sniffing attacks [8, 163]. Besides,
anonymization of the information transmitted from BCI to NCD is also recommendable against
attacks impacting confidentiality, for example, using the BCI Anonymizer [17, 18, 164]. Social engi-
neering and phishing attacks focused on credential theft can be reduced by implementing a second
authentication factor to access the BCI and proper access control mechanisms [8, 135, 165]. The
application of the malware countermeasures indicated in Section 2.3 can evade global malware
threats impacting NCDs, by updating all software to the latest version and implementing periodic
backup plans. Moreover, the use of ML techniques, as proposed by Fernández-Maimó et al. [37]
for Medical Cyber-Physical Systems (MCPS), can also be used to detect, classify, and mitigate ran-
somware attacks. Concerning botnets, a wide variety of detection techniques have been detected by
us for the BCI field, like the use of anomaly detection based on ML and signatures, the quarantine
of infected devices, and the interruption of particular communication flows [4, 73, 92]. Finally, we
consider that the recommendations of the U.S. Food and Drug Administration (FDA) for premarket
and postmarket management of security in medical devices apply to BCI [150, 168, 169].

3.2 Global BCI
3.2.1 Architecture Description. Global BCI architectures focus on the management of neural

data acquisition and neural stimulation of multiple users through an Internet connection. This ar-
chitecture considers three devices to deploy the phases making up the BCI cycle, as can be seen
in Figure 4. In this family, the BCI device remains focused on data acquisition and stimulation
(phase 2), whereas the NCD is in charge of the execution of applications (phase 5), as well as con-
version and processing actions (phase 3). Finally, the new element introduced in this architecture
is the Remote Control Device (RCD), representing one or more external resources or services ac-
cessible via the Internet, such as cloud computing and storage. It typically implements phases 4
and 5 of the BCI cycle, as it has the resources to run more complex applications and information
analysis. The main difference between this architecture and the one described for Local BCIs in
Section 3.1 is that, in Local BCIs, the NCD does not send user information to external services (e.g.,
cloud). Finally, this section focuses on the problems associated with the communication between
NCD and RCD, and the BCI-related attacks that can apply to RCDs. However, these later attacks are
addressed in a general way, as specific cloud computing attacks are outside the scope of this article.
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3.2.2 Examples of Deployments. This architectural deployment is the most innovative, as it
allows the communication of multiples users with external services and the creation of complex
deployments, where the data and information of every user are stored and managed in a shared
infrastructure. From a commercial point of view, Emotiv allows users to contrast their data with
the data stored by other users, as well as keep users’ neural recordings in the cloud to visualize
and manipulate them, also offering an API called Emotiv Cortex [35]. Besides, several companies
worldwide provide distributed BCI services, as is the case of Lifelines Neuro [88], which offers a
continuous EEG acquisition, storage, and visualization in their cloud platform. These scenarios are
especially relevant in the context of personalized medicine and early diagnosis.

3.2.3 Attacks and Countermeasures. Considering the attacks on this deployment, the issues
documented in Section 3.1 for Local BCIs are also applicable in this architecture. However, Global
BCIs present higher risks, since these deployments are an opportunity for remote attacks against
interconnected BCI devices, which derives in physical harm for their users. Furthermore, Takabi
et al. [165] detected that BCI applications could send raw brain signals to cloud services that
execute ML techniques to extract sensitive information and therefore affect confidentiality. We
identify that this problem can also be present in Local BCIs if the NCD has an Internet connection.
Ballarin et al. [8] identified that man-in-the-middle attacks could occur in the communication chan-
nel between NCD and RCD, affecting the integrity and confidentiality of the data transmitted as
well as the service availability. They also detected that attacks on RCDs could have a higher impact
on confidentiality than on Local BCIs, as these platforms store sensitive information from multiple
users, that can be stolen or sold to third parties. Ienca et al. [60] detected different issues in Global
BCIs in terms of their usage. First, they highlighted that current brands, such as Emotiv [34], indi-
cate in their privacy policy that they can gather personal data, usage information, and interactions
with other applications, and that they can infer information from these sources, with potential
confidentiality issues. The authors identified as possible the use of big data to extract associations
and share the data with third parties. Moreover, they detected that the use of cloud services
could derive in a massive database theft with sensitive data, an unclear legal liability in case of
breaches.

We identify that this architecture is quite similar to those defined and implemented for Internet
of Things (IoT) scenarios, where constrained devices communicate with external services via in-
termediate systems, especially when multiple devices interact. We detect that most of the security
attacks and impacts defined by Stellios et al. [160] are also applicable in this architecture. Moreover,
we consider that the issues highlighted by the OWASP in their IoT projects are critical aspects of
Global BCIs [125]. This relationship between IoT and external services has been previously studied
in cloud computing scenarios [19]. Despite the advantages, attacks on cloud computing can impact
integrity, confidentiality, and availability in different cloud architecture levels, such as infrastruc-
ture, networking, storage, and software [9, 155]. The evolution of NCDs derives in mobile devices
with higher computing capabilities, integrated into mobile cloud computing systems. However,
they also have an impact on the security of deployments [113]. We also detect that the improve-
ment of NCDs capabilities can also allow the introduction of fog computing in Global BCIs, where
NCDs perform part of the computation, generating new security and trust issues [93, 142, 183].
Malware attacks are also present in cloud environments, where ransomware and botnets are com-
mon threats [155].

Focusing on general cloud computing countermeasures, Amara et al. [3] identified security
threats and attacks, as well as the mitigation techniques against them. The use of honeypots, fire-
walls, and IDS in cloud scenarios is convenient to reduce the impact of malware attacks [142].
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Fig. 5. Attacks, impacts, and countermeasures associated with the BCI architectural deployments. Elements
indicated in red represent information detected in the literature, while blue represents our contribution.

Figure 5 summarizes the previous attacks, impacts, and countermeasures. This figure first shows
the list of attacks considered in this section, associated with a unique icon, where those attacks with
references indicate that they have been detected in the literature, while those without references
represent our contribution. After that, we show the impacts that generate the previous attacks,
organized by category. For each impact, we indicate the specific attacks that cause the impact, and
which elements of the architectural deployments presented in Figure 4 are affected. Moreover, we
consider the issues on the communication links between these elements. In particular, the attacks
and elements identified in red represent issues detected in the literature, whereas those in blue are
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our contributions. Finally, this figure lists countermeasures detected both in the literature and by
us, associating each attack with a list of countermeasures. The color and reference criteria used
before for the impacts also applies to the countermeasures, where an attack represented with a
particular color indicates that all their countermeasures have the same color.

4 BCI TRENDS AND CHALLENGES
One of the first BCI solutions was developed at the end of the 1990s. It supposed a significant
advancement in the medical industry, specifically in neurorehabilitation, bringing to the reality
the mental control of prosthetic limbs and wheelchairs [119]. During the decade of the 2000s, a
new generation of neuroprosthetic devices was developed to restore the mobility of patients se-
verely paralyzed, creating communication links between the brain and a wide variety of actuators,
such as robotic exoskeletons [82]. This trend in the field of BCI has resulted in new paradigms
and scenarios in the last decade, where acquisition and stimulation procedures are used together
to acquire brain activity and deliver feedback to the brain or peripheral nerves, defining the con-
cept of bidirectional, or closed-loop, BCIs. Focusing on these systems, NeuroPace RNS is the only
technology clinically approved for closed-loop treatment [33]. DBS is nowadays considered as a
unidirectional BCI system, or open-loop, only performing stimulation actions. Nevertheless, cur-
rent research aims to develop closed-loop DBS systems that are able to automatically identify the
best stimulation parameters based on the status of the brain [52]. This evolution is also applicable
for neuroprostheses, where the users can mentally control prosthesis while receiving stimulation
to recover motor abilities [85].

This evolution allowed the definition of prospect ways of interaction where the BCI acts as an
online communication element with other systems and users, based on Global BCI architectures.
In particular, we subsequently present several examples of futuristic systems to highlight the im-
portance of security in the progress of BCI technologies. Zhang et al. [182] defined the concept of
the Internet of Brain, also known as Brain-to-Internet (BtI), where the BCI uses an NCD to access
Internet services, such as search results or social media. Lebedev et al. [82] also described experi-
ments where monkeys controlled remote robotic arms using BCI devices. More recently, Saad et al.
[144] identified that 6G technologies could enable the interconnection of BCIs with the Internet.
Besides, Martins et al. [97] documented a fusion between neuralnanorobotics and cloud services
to acquire knowledge, defining the concept of Human Brain/Cloud Interface (B/CI). Another fu-
turistic approach, Brain-to-Brain (BtB), allows direct communications between two brains, known
as BtB [127, 184], where Pais-Vieira et al. [127] documented the real-time exchange of information
between the brain of two rats. These systems have also been extended to create networks of in-
terconnected brains, known as Brainet, which can perform collaborative tasks between users and
share knowledge, memories, or thoughts through remote brains [67, 126]. Although these systems
are in an early research stage, they could be a reality in the next decades, where security aspects
will gain enormous importance. To represent this trend, Figure 6 illustrates this evolution of the
literature, indicating the years of publication and approaches. Besides, current innovations, such
as the use of silicon-based chips, could increase the quantity of information that we can acquire
from the brain, and ease the development of electronic devices to improve the resolution of the
neural acquisition and sensitivity of the process [121].

The BCI research field has gained relevance in the last few years, where different governments
have funded and promoted BCI initiatives. In the United States of America, the DARPA is sup-
porting the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies)
[64]. Canada has launched its research line, called the Canadian Brain Research Strategy [63, 162].
On the other side of the Atlantic ocean, the European Union has also supported different projects,
such as the Human Brain Project (HBP) [133] or the Brain/Neural Computer Interaction (BNCI)
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Fig. 6. Timeline of the evolution of BCI research, seen from the perspective of BtI, BtB, and Brainet
approaches.

project [21, 22]. Asia has also promoted several initiatives, such as the China Brain Project [132] or
the Brain/MINDS project in Japan [20]. All the previous initiatives and projects aim to advance the
understanding of the human brain through the use of innovative technologies. As a consequence,
emerging technologies offer precise acquisition and stimulation capabilities that enable new BCI
application scenarios. The common interest in the study of the human brain and, in particular, on
BCI leads to new opportunities for manufacturers, who can increase their competitiveness produc-
ing revolutionary BCI services based on growing paradigms such as the IoT, cloud computing, and
big data. This development derives in the improvement of the usability, accuracy and safety of the
products, together with their expansion to non-medical economic sectors such as entertainment.
The result of the above is a trend of BCI toward Global BCI architecture deployments, where
multiple BCI devices can communicate between them to perform collaborative tasks, based on the
approaches of BtI, BtB, and Brainet. Once summarized the evolution of BCI and its trend, below,
we highlight the most relevant current and future challenges concerning security on BCI.

4.1 Interoperability between BCI Deployments
Existing BCI deployments consider isolated devices without standards to provide interoperability
in terms of communication and data representation. This is the case of commercial BCI brands and
devices, which have been designed to resolve particular problems and are not compatible between
them [137]. Moreover, deployments integrating the communication between several BCIs are ad
hoc; that is, manufacturers design and implement them, considering only the requirements of a
particular scenario. In this context, the current trend of BCIs toward paradigms such as the IoT
and cloud computing will require an improvement in interoperability, as it is essential to ensure
the future expansion of BCI technologies. Besides, the lack of interoperability limits the definition
of global cybersecurity systems and mechanisms that can be applied. In this sense, current BCI
solutions are device-oriented and do not offer collaborative mechanisms against cyberattacks.
We detect as a future opportunity the use of well-known standardized APIs, communication
technologies, and protocols to offer seamless protection on BCI. We also propose the use of
ontologies to represent neural information in a formal and standardized fashion. Different
companies and products would use a joint representation to ease data interpretation, processing,
and sharing. This homogenization would have a positive impact on cybersecurity, enabling the
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design and deployment of new protocols and mechanisms for the secure exchange of particular
pieces of sensitive data between independent BCI solutions. In particular, the exchange of medical
information between different organizations can be accomplished using well-known standards,
as is the case of the HL7 standard [53].

4.2 Extensibility of BCI Designs
Extensibility refers to the ability of BCIs to add new functionality and application scenarios dy-
namically. Nowadays, BCI devices suffer a lack of extensibility, as companies manufacture them
to provide particular services on fixed application scenarios. The neural data processing is per-
formed in a fixed way and according to predefined premises. It means that each layer making up
BCI architectures performs particular processing tasks, which can not be changed or even mod-
ified on demand [163]. Since each application scenario has its requirements and restrictions, the
trend toward Global BCI will need new automatic and flexible architectures and processing mech-
anisms over the acquired neural data. These aspects also affect the security solutions that can be
applied, since current constraints of BCI systems prevent the use of reactive and adaptive defen-
sive mechanisms to face the threats described in previous sections. In conjunction with a lack of
interoperability, the security responsibilities of each phase of the architecture are predefined and
cannot be extended within that element, or delegated to be performed in other systems. As a fu-
ture line of work, we highlight the design of BCI deployments that allow the implementation of
most of the operations performed in software, instead of hardware, allowing developers to change
the system’s behavior. Another possible solution is a modular design of BCI, including supplemen-
tary modules, according to the requirements. However, these modifications introduce new security
challenges, since software developments are more prone to errors and attacks, and new modular
systems will address specific challenges, such as the verification of their authenticity.

4.3 Data Protection
Current BCI architectures and deployments do not consider the protection of neural data and
personal information, as detected in the literature [137, 152, 164]. The evolution of BCIs toward
distributed scenarios with heterogeneous and ubiquitous characteristics, such as BtB approaches,
will require the storage and management of multiple users’ personal and sensitive data. Because of
that, future deployments should ensure that this critical information is transmitted and processed
securely. Specifically, robust cryptography mechanisms need to be applied over data communica-
tion and storage, while techniques such as differential privacy or homomorphic encryption would
help to ensure the anonymization of the data. Moreover, users do not have control over their
privacy preferences to define who has access to the information and in which particular circum-
stances. Because of that, there are no specific privacy regulations to ensure that applications and
external services can access only to the neural information accepted by users, nor any limitation
on manufacturers or third-parties to prevent the processing of sensitive neural data without users
authorization. To improve this situation, we propose policy-based solutions that allow users to
define their privacy preferences based on their particular context. Besides, we propose the use of
user-friendly systems that also help users proposing privacy-preserving recommendations. These
initiatives must also align with the data protection law applicable in each country.

4.4 Physical and Architectural BCI Threats
Nowadays, a considerable amount of BCI designs and deployments do not consider cybersecurity
issues such as the protection of communications, processing, storage, and applications. Although
some solutions include security mechanisms, like Medtronic DBS products, some aspects must be
improved. In particular, these devices use proprietary telemetry protocols [101], which recently
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has led to vulnerabilities [27]. Nevertheless, companies such as Medtronic or Boston Scientific pub-
lish security bulletins when a security vulnerability affecting their devices is detected [103, 151],
highlighting the interest that companies have on security. Moreover, the lack of BCI standards
and, specifically, cybersecurity standards, prevent the homogenization of the security solutions
implemented [17, 137, 163, 165]. The expansion of BCI will require robust dynamic cybersecurity
mechanisms to face future challenges. Moreover, the development of more precise BCI devices
and the integration of a large number of devices and systems, would result in a massive produc-
tion of sensitive data. In our opinion, this context could benefit the increase of vulnerable systems
and communication links. To address these challenges, manufacturers should evaluate alternatives
for the mitigation of cyberattacks from multiple perspectives, aiming to implement seamless cy-
bersecurity solutions. Based on that, we propose using 5G network technologies, since they have
been designed to support a significant number of devices, which are necessary for BtB and Brainet
scenarios. In particular, we identify that techniques and paradigms associated with 5G, such as
Network Function Virtualisation (NFV) and Software-defined Networking (SDN) for the virtual-
ization and dynamic management of network communications, are useful for the development of
reactive cybersecurity solutions. Also, technologies such as Blockchain can provide the tracking
of the information and ensure that it has not been modified, guaranteeing the integrity of the data.
Moreover, we identify the protection of network communications by using protocols such as TLS
[62] or IPsec [61] as an opportunity, which offers robust mechanisms against cyberattacks. More-
over, we detect that the application of information risk management standards, such as the ISO
27000 [65], and the NIST Cybersecurity Framework [120] could benefit the creation of homoge-
neous and robust solutions. Finally, we identify that game theory applied to BCI security strategies
can be useful to implement regularly evolving systems. In particular, they can be useful to model
how to establish the most appropriate countermeasures against continuously and automatically
changing attacks, specifically in distributed scenarios such as BtB [7].

5 CONCLUSION
This article performs a global and comprehensive analysis of the literature of BCIs in terms of se-
curity and safety. Mainly, we have evaluated the attacks, impacts and countermeasures that BCI so-
lutions suffer from the software’s architectural design and implementation perspectives. Initially,
we proposed a unified version of the BCI cycle to include neural data acquisition and stimulation
processes. Once having a homogeneous BCI cycle design, we identified security attacks, impacts,
and countermeasures affecting each phase of the cycle. It served as a starting point to determine
which processes and functioning stages of BCIs are more prone to attacks. The architectural de-
ployments of current BCI solutions have also been analyzed to highlight the security attacks and
countermeasures related to each approach to understanding the issues of these technologies in
terms of network communications. Finally, we provide our vision regarding BCI trends and de-
pict that the current evolution of BCIs toward interconnected devices is generating tremendous
security concerns and challenges, which will increase in the near future.

Among the learned lessons, we highlight the following five: (1) the field of security oriented
to BCI technologies is not yet mature, generating opportunities for attackers; (2) even non-
sophisticated attacks can have a significant impact on both BCI technologies and users’ safety;
(3) there is a current opportunity for standardization initiatives to unify BCIs in terms of informa-
tion security; (4) well-studied fields, such as IMDs and IoT, can define a guide to develop robust
security mechanisms for BCIs; (5) users’ awareness of BCI security issues is vital.

As future work, we plan to focus our efforts on the design and implementation of solutions able
to detect and mitigate attacks affecting the stimulation process in real time. In this context, we are
considering using artificial intelligence techniques to detect anomalies in the firing patterns and
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neural activity controlled by BCI solutions in charge of stimulating the brain. Besides, we also plan
to contribute by improving the interoperability and data protection mechanisms of existing BCI
architectures. Finally, another future work is the development of dynamic and proactive systems
as an opportunity to mitigate the impacts of the attacks documented in this work.
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Abstract
Brain-Computer Interfaces (BCI) arose as systems that merge computing systems with
the human brain to facilitate recording, stimulation, and inhibition of neural activity.
Over the years, the development of BCI technologies has shifted towards miniaturization
of devices that can be seamlessly embedded into the brain and can target single neuron
or small population sensing and control. We present a motivating example highlighting
vulnerabilities of two promising micron-scale BCI technologies, demonstrating the lack of
security and privacy principles in existing solutions. This situation opens the door to a
novel family of cyberattacks, called neuronal cyberattacks, affecting neuronal signaling.
This article defines the first two neural cyberattacks, Neuronal Flooding (FLO) and Neu-
ronal Scanning (SCA), where each threat can affect the natural activity of neurons. This
work implements these attacks in a neuronal simulator to determine their impact over the
spontaneous neuronal behavior, defining three metrics: number of spikes, percentage of
shifts, and dispersion of spikes. Several experiments demonstrate that both cyberattacks
produce a reduction of spikes compared to spontaneous behavior, generating a rise in tem-
poral shifts and a dispersion increase. Mainly, SCA presents a higher impact than FLO in
the metrics focused on the number of spikes and dispersion, where FLO is slightly more
damaging, considering the percentage of shifts. Nevertheless, the intrinsic behavior of each
attack generates a differentiation on how they alter neuronal signaling. FLO is adequate
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to generate an immediate impact on the neuronal activity, whereas SCA presents higher
effectiveness for damages to the neural signaling in the long-term.
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ABSTRACT Brain-Computer Interfaces (BCI) arose as systems that merge computing systems with the
human brain to facilitate recording, stimulation, and inhibition of neural activity. Over the years, the devel-
opment of BCI technologies has shifted towards miniaturization of devices that can be seamlessly embedded
into the brain and can target single neuron or small population sensing and control. We present a motivating
example highlighting vulnerabilities of two promising micron-scale BCI technologies, demonstrating the
lack of security and privacy principles in existing solutions. This situation opens the door to a novel
family of cyberattacks, called neuronal cyberattacks, affecting neuronal signaling. This article defines the
first two neural cyberattacks, Neuronal Flooding (FLO) and Neuronal Scanning (SCA), where each threat
can affect the natural activity of neurons. This work implements these attacks in a neuronal simulator to
determine their impact over the spontaneous neuronal behavior, defining three metrics: number of spikes,
percentage of shifts, and dispersion of spikes. Several experiments demonstrate that both cyberattacks
produce a reduction of spikes compared to spontaneous behavior, generating a rise in temporal shifts and a
dispersion increase. Mainly, SCA presents a higher impact than FLO in the metrics focused on the number
of spikes and dispersion, where FLO is slightly more damaging, considering the percentage of shifts.
Nevertheless, the intrinsic behavior of each attack generates a differentiation on how they alter neuronal
signaling. FLO is adequate to generate an immediate impact on the neuronal activity, whereas SCA presents
higher effectiveness for damages to the neural signaling in the long-term.

INDEX TERMS Brain computer interfaces, security, artificial neural networks, biological neural networks.

I. INTRODUCTION
Brain-computer Interfaces (BCIs) are considered as bidirec-
tional communication systems between the brain and exter-
nal computational devices. Although BCIs arose as systems
focused on controlling external devices such as prosthetic
limbs [1], they have gone one step further, enabling artificial
stimulation and inhibition of neuronal activity [2]. In the
last years, neuronal stimulation has already been applied in

The associate editor coordinating the review of this manuscript and

approving it for publication was Yassine Maleh .

different scenarios such as the provision of sensory feedback
to prosthetic or robotic limbs [3], treatment of neurodegenera-
tive diseases or disorders like Alzheimer’s or depression [4],
and even futuristic applications such as interconnected net-
works of brains [5] or brains connected to the Internet [6].
New BCI technologies are emerging, allowing a precise

acquisition, stimulation, and inhibition of neuronal signaling.
It reduces the brain damage caused by traditional invasive
BCI systems and improves the limitations of non-invasive
technologies such as attenuation, resolution, and distortion
constraints [7], [8]. One of the most recent and promising
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BCI technique focuses on the use of nanodevices allocated
across the brain cortex [9]. Specifically, a relevant task of
nanodevices equipped with optogenetic technology is the use
of light to stimulate or inhibit engineered neurons according
to different firing patterns sent by external transceivers [10].
Promising initiatives such as Neuralink aim to accelerate the
development of these technologies [11].
The previous BCI technologies hold the promise of chang-

ing our society by improving the cognitive, sensory, and
communications skills of their users. However, they also open
the door to critical cyberattacks affecting the subjects’ safety
and data security. In this context, essential vulnerabilities of
current non-invasive BCI systems have been documented,
exploited, and partially solved in the literature [12]. As an
example, the authors of [13], [14] demonstrated the feasi-
bility of presenting malicious visual stimuli to extract sub-
jects’ sensitive data like thoughts. Besides, Sundararajan [15]
conducted a successful jamming attack over the wireless
communication used by the BCI, compromising its avail-
ability. However, the irruption of invasive and non-invasive
stimulation and inhibition techniques, without security nor
privacy capabilities, brings to the reality a novel family of
cyberattacks affecting the neuronal activity. We call them
Neural cyberattacks, and they present a critical number of
open challenges like the definition and categorization of the
different neural cyberattacks and their neuronal behavior, the
impact of each cyberattack to the neuronal behavior, and their
consequences in the brain and body.
To improve the previous challenges, the main contributions

of this article are the following ones:
• The identification of cybersecurity vulnerabilities on
emerging neurostimulation implants.

• To the best of our knowledge, the first description and
implementation of neural cyberattacks focused on neu-
ronal stimulation and affecting the activity of neural
networks allocated in the human’s brain. The proposed
cyberattacks, Neuronal Flooding and Neuronal Scan-
ning, are inspired by the behavior of current well-known
cyberattacks in computer networks.

• The definition of three metrics to evaluate the impact of
the two neural cyberattacks proposed: number of spikes,
percentage of shifts, and dispersion of spikes.

• The implementation of the previous cyberattacks in a
neuronal simulator to measure the impact produced by
each one of them and the implications that they generate
on the neuronal signaling. For that, we model a portion
of a mouse’s visual cortex based on the implementation
of a CNN where the mouse is able to exit a maze.

The paper remainder is organized as follows. Section II
gives an overview of the present state-of-the-art of current
vulnerabilities, cyberattacks, and countermeasures affecting
existing BCIs. After that, Section III illustrates emerging
neurostimulation technologies and their cybersecurity con-
cerns. Subsequently, Section IV offers a formal description
of the cyberattacks proposed, while Section V describes the
implemented use case. Section VI first presents the metrics

used to evaluate the impact of these cyberattacks, followed by
the analysis of the results and impact that these cyberattacks
generate. Finally, Section VII briefly discusses the outcomes
and potential future works.

II. RELATED WORK
During the last five years, new concepts such as brain-
hacking, or neurocrime have emerged to describe relevant
aspects of cybersecurity in BCI [16], [17]. These works high-
light that neuronal engineering devices, designed to stimu-
late targeted regions of the brain, would become a critical
cybersecurity problem. In particular, they acknowledge that
attackers may maliciously attempt to program the stimu-
lation therapy, affecting the patient’s safety. Furthermore,
they emphasize that the cyberthreats do not need to be too
sophisticated if they only want to cause harm. In this context,
as indicated in this article, it is possible to have a high
impact on the brain by taking advantage of neurostimulation
implants and send malicious electrical signals to the brain.
Despite the identification of these risks, there are no studies in
the literature defining or implementing neural cyberattacks,
where the evaluation of their impact over the brain remains
unexplored. However, several vulnerabilities and attacks have
been detected in BCI technologies performing neural data
acquisition (e.g., EEG), which can serve as a starting point
to perform neural cyberattacks. Section III offers additional
considerations about vulnerabilities in BCI solutions.
Platforms and frameworks that enable the development

of BCI applications also present cybersecurity concerns,
as demonstrated in [18], [19]. In this context, the authors
of [18] performed an analysis of the privacy concerns of
BCI application stores, including Software Development Kits
(SDKs), Application Programming Interfaces (APIs), and
BCI applications. They discovered that most applications
have unrestricted access to subjects’ brainwave signals and
can easily extract private information about their subjects.
Moreover, Cody’s Emokit project [17], managed to break
the encryption of the Emotiv EPOC device (valid for all
models before 2016), having access to all raw data transmit-
ted. The authors of [19] proposed a mechanism to prevent
side-channel extraction of subjects’ private data, based on
the anonymization of neural signals before their storage and
transmission.
The majority of the existing BCI systems are oriented

to acquire, or record, neural data. Specifically, EEG BCI
devices have gained popularity in recent years, due to their
low cost and versatility, influencing the number of existing
cyberattacks exploiting BCI vulnerabilities. In this context,
the authors of [20] studied and analyzed well-known BCI
applications and their potential cybersecurity and privacy
concerns. Martinovic et al. [14] were able to extract users’
sensitive information, such as debit cards or PINs, by pre-
senting particular visual stimuli to the users and analyzing
their P300 potential response. Another attack, performed by
Frank et al. [13], focused on presenting subliminal visual
stimuli included within a video, aiming to affect the BCI
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users’ privacy. Finally, in our previous work [21], we studied
the feasibility of performing cybersecurity attacks against the
stages of the BCI cycle, considering different communica-
tion architectures, and highlighting their impact and possible
countermeasures.
In conclusion, this section demonstrates that most of the

related works are focused on presenting vulnerabilities and
cyberattacks affecting the confidentiality, availability, and
integrity of private data managed by BCIs. Nevertheless,
there is a lack of solutions considering cyberattacks affecting
the neuronal activity and, therefore, the subjects’ safety. This
article proposes two neural cyberattacks affecting the natural
behavior of single and population of neurons.

III. CYBERSECURITY VULNERABILITIES OF EMERGING
NEUROSTIMULATION IMPLANTS
This section introduces three promising BCI technologies
capable of recording and stimulating neuronal activity with
single-neuron resolution. For each scenario, we offer a
description of its architecture, highlighting the cybersecurity
vulnerabilities detected. Although these solutions are in an
early stage, and they are still not commercial products, they
are contemporary examples of how cybersecurity can affect
existing and future implantable BCI solutions, and in partic-
ular for solutions that can target small neuron populations.
These issues represent the starting point for the cyberattacks
illustrated in the next sections of this article. It is important
to note that the objective of this section is not to find vulner-
abilities in BCI devices or architectures but to justify how the
proposed cyberattacks could be performed in realistic BCI
systems.

A. NEURALINK
Neuralink aims to record and stimulate the brain using new
technologies, materials, and procedures to reduce the impact
of implanting electrodes in the brain [11]. The first element
of the Neuralink architecture are the threads, proposed as an
alternative for traditional electrodes due to their biocompati-
bility, reduced size based on thin threads that are woven into
the brain tissue, durability, and the number of electrodes per
thread. Groups of threads connect to an N1 sensor, a sealed
device in charge of receiving the neural recordings from the
threads and sending them stimulation impulses.With a simple
medical procedure, up to ten N1 implants can be placed in the
brain cortex. These devices connect, using tinywires tunneled
under the scalp, to a coil implanted under the ear. The coil
communicates wirelessly through the skin with a wearable
device, or link, placed under the ear. The link contains a bat-
tery that represents the only power source in the architecture,
deactivated if the user removes the link. FIGURE 1 represents
this architecture.
Although the communication mechanisms between the

coil and the link are not provided, the link is managed via
Bluetooth from external devices, such as smartphones, using
an application. In this sense, Neuralink users can manage and
personalize their links, upgrade their firmware, and include

FIGURE 1. Architecture and vulnerabilities of Neuralink.

new security capabilities.We identify that this scenario can be
potentially vulnerable as follows. First, the wireless mecha-
nism used in the communication between the coil and the link
could be vulnerable, depending on the protocol used [22].
Besides, the Bluetooth communication between the smart-
phone and the link can also be vulnerable, according to the
version used [23], [24]. As an example, we identify Sweyn-
Tooth, a set of 12 vulnerabilities affecting a large number
of devices using Bluetooth Low Energy (BLE) technologies.
Based on them, an attacker could crash the device and stop
its communications [25], deadlock the device [26], or access
functions only available for authorized users [27].
Moreover, the external device manages the logic of

both acquisition and stimulation processes, including into
these scenarios its inherent risks, and becoming one of the
most sensitive elements of the architecture. In particular,
Li et al. [20] detected that attackers could take total control
of a smartphone running a BCI application, getting access
to sensitive information, or performing malicious stimulation
actions. Furthermore, the link is a critical element of the
architecture, where attackers can modify the firmware of the
device to have a malicious behavior, as identified by [28]
for brain implants or to perform jamming attacks to disrupt
the communication between devices, described by [29] for
wireless networks.

B. NEURAL DUST
This architecture is composed of millions of resource-
constrained nanoscale implantable devices, also known as
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FIGURE 2. Architecture and vulnerabilities of Neural dust.

neural dust, floating in the cortex, able to monitor neural elec-
trophysiological activity precisely [9]. These devices com-
municate with the sub-dura transceiver, a miniature device
(constructed from components that are built from nanoma-
terials) placed beneath the skull and below the dura mater.
This device uses two different transceivers to: (1) power and
establish communication links with the neural dust, (2) com-
municate with external devices. During neural recording,
the sub-dura transceiver performs both spatial and frequency
discrimination with sufficient bandwidth to power and inter-
rogate each neural dust. The external transceiver is a device
without computational and storage restrictions, allocated out-
side of the patient’s head. Wearables, smartphones, or PCs
are examples of this device. The main task of the external
transceiver is to power and communicate with the sub-dura
transceiver and to receive the neuronal behavior from the
sensing by the neural dust. FIGURE 2 presents the architec-
ture of this solution, as well as the potential vulnerabilities
that it presents.
Nevertheless, this technology has not been conceived fol-

lowing the principle of security and privacy by design. As a
consequence, these devices do not implement authentica-
tion mechanisms to prevent malicious users from collecting
neural sensing data from the neural dust, and they do not
protect the transmitted data. In particular, the neural dust
are resource-constrained devices without computational and
storage capabilities to execute security functionalities like
authentication protocols, ciphered communications, or data
encryption. In this sense, external attackers could power
and communicate to the implants to monitor private neural
data. Finally, the sub-dura and external transceivers do not
implement authentication protocols nor securitymechanisms.
An attacker could impersonate the external transceiver to
communicate with the sub-dura device, and obtain sensitive
neuronal signaling.

C. WIRELESS OPTOGENETIC NANONETWORKS
The Wireless Optogenetic Nanonetworking device
(WiOptND) [10] is an extension from the neural dust [9]
but with the capability of optogenetically stimulating the
neurons. Optogenetic stimulation uses light to stimulate
neurons genetically engineered with specific genes that are
sensitive to signals at a particular wavelength. This in turn
provides targeted stimulation of very small population of
neurons that have been engineered, enabling precise targeting
of neural circuits within the micro-columns. Similar to the
architecture of the neural dust, the WiOptND also receives
power that is emitted from the sub-dura, which in turn
communicates to the external transceiver. However, since
the WiOptND is responsible for stimulating the neurons,
the external transceiver will communicate the sequence of
firing the neurons to the sub-dura transceiver to synchronize
the charging and communication of the WiOptND implants.
This is achieved by sending the firing sequence, in the
form of a raster plot, to the external transceiver. This opens
up new opportunities for attackers to send malicious firing
patterns into the external transceiver, which will produce
a new sequence of firing patterns for neural stimulation,
resulting in detrimental consequences for the brain. Finally,
the architecture and vulnerabilities described in FIGURE 2
also apply for WiOptND.
In conclusion, the previous vulnerabilities raise different

concerns affecting the integrity, confidentiality and availabil-
ity of subject’s neural data. These vulnerabilities motivate
different attack vectors to perform the neural cyberattacks
described in subsequent sections.

IV. DEFINITION OF NEURAL CYBERATTACKS
Once demonstrated the feasibility of stimulating individ-
ual neurons by attacking different technological solutions,
we formally describe two cyberattacks, Neuronal Scanning
and Neuronal Flooding, aiming to maliciously affect the nat-
ural activity of neurons during neurostimulation procedures.
They are inspired by the behavior and goals of some of
the most well-known and dangerous cyberattacks affecting
computer networks.
To formalize both cyberattacks, we denote NE ⊂ N as a

subset of neurons from the brain, where n ∈ NE expresses
every single neuron. The voltage of a single neuron in a
specific instant of time is denoted as vn ∈ R, whereas
vin ∈ R indicates the voltage increase used to overstimulate
a neuron n. Moreover, twin represents a temporal window in
which the cyberattack is performed, equivalent to the duration
of the simulation in Section VI. tattk is the time instant when
the cyberattack starts, and 1t the amount of time between
evaluations during the process. In the implementation of the
cyberattacks, it represents the duration of the steps of the
simulation.

1) NEURONAL FLOODING
In the cyberworld, a flooding cyberattack is designed to
bring a network or service down by collapsing it with large
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amounts of network traffic. Traffic is usually generated by
many attackers and forwarded to one or more victims. Extrap-
olating this network cyberthreat to the brain, a Neuronal
Flooding (FLO) cyberattack consists in stimulating multiple
neurons in a particular instant of time, changing the normal
behavior of the stimulation process and generating an over-
stimulation impact. The execution of this cyberattack does not
require prior knowledge of the status of the affected neurons
since the attacker only has to decidewhat neurons to stimulate
and when. This fact makes this cyberattack less complex
than other cyberattacks that require prior knowledge of the
neuronal behavior.
In particular, FLO performs the overstimulation action at

tattk. In that precise moment, a subset of neurons AN ⊆
NE is attacked. This cyberattack is formally described in
Algorithm 1.

Algorithm 1 FLO Cyberattack Execution
t = 0
while t < twin do
if t == tattk then
for all n ∈ AN do
vn← vn + vin

end for
end if
t ← t +1t

end while

FIGURE 3. Raster plot of a FLO cyberattack when the attack is performed
at 10ms.

FIGURE 3 represents an example to appreciate graphically
the behavior of a FLO cyberattack, where the details of the
neuronal network used in the simulation are not relevant at
this point (addressed in Section V). In particular, it represents
the comparison of the FLO cyberattack with the spontaneous
behavior for a simulation of 80 neurons, a duration of 90ms,
and 42 neurons attacked in the instant 10ms. Green dots
represent the neuronal spontaneous behavior, blue circles
indicate the instant when the neurons are attacked, red circles
highlight the propagation of the cyberattack in time, and
those dots with a green color and red outline represent spikes
common to both spontaneous and under attack situations.
In this figure, we can see that all the attacked neurons alter

their behavior, having spikes in different moments compared
to the spontaneous activity.

2) NEURONAL SCANNING
Port scanning is another well-known cybersecurity technique
performed by attackers to discover vulnerabilities in oper-
ating systems, programs, and protocols using network com-
munications. In particular, it aims to test every networking
port of a machine, checking if it is open and discovering the
protocol or service available in that end-point. In the brain
context, a Neuronal Scanning (SCA) cyberattack stimulates
neurons sequentially, impacting only one neuron per instant
of time. Based on that, it is essential to note that attackers do
not require prior knowledge of the neuronal state to perform
neural scanning cyberattacks. This fact, together with the
stimulation of one neuron per instant of time, makes a low
attack complexity.
Considering the notation previously defined, Algorithm 2

describes an SCA cyberattack. In particular, it sequentially
overstimulates all the neurons included in the set of neurons
NE, without repetitions. For each neuron n, its voltage vn
increases by vin. It is essential to indicate that the conditional
clause limits the instants in which an attack can be performed,
where tattk represents the attack over the first neuron of the
set, and tattk + |NE|1t the attack over the last neuron.

Algorithm 2 SCA Cyberattack Execution
t = 0
while t < twin do
if t ∈ [tattk , tattk + |NE|1t] then
n← (t − tattk )/1t
vn← vn + vin

end if
t ← t +1t

end while

Finally, FIGURE 4 shows, in a visual way, the behavior
of an SCA cyberattack. We simulate 80 neurons during 90s,
and sequentially attack all neurons, starting in the instant
10ms. The color code followed is the same as in FIGURE 3.
As can be seen, the sequential attack of the neurons generates
a diagonal line in the spikes. All spikes over the line remain
unaltered since those neurons have not yet been affected by
the attack. On the contrary, the spikes under the diagonal are
affected by the attack.

V. EXPLOITING VULNERABILITIES DUE TO
CYBERATTACKS
This section introduces the use case used to implement the
cyberattacks defined in Section IV. We present the scenario
and the experimental setup implemented to create the neu-
ronal topology required to test the cyberattacks.

A. USE CASE AND EXPERIMENTAL SETUP
The knowledge of precise neocortical synaptic connections
in mammalian is nowadays an open challenge [30]. Based on
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FIGURE 4. Raster plot of an SCA cyberattack, from the instant 10ms to
90ms.

this absence of realistic neuronal topologies, we have stud-
ied the primary visual cortex of mice and replicated a por-
tion of it, modeled using a Convolutional Neural Network
(CNN) [31]. This CNN was trained by means of reinforce-
ment learning [32] to represent a simple system able to make
decisions based on a maze and find its exit. As indicated
by Kuzovkin et al. [33], CNNs, and biological neuronal
networks present certain similarities. First, lower layers of a
CNN explain gamma-band signals from earlier visual areas,
whereas higher layers explain later visual regions. Further-
more, early visual areas are mapped to convolutional layers,
where the fully connected layers match the activity of higher
visual areas. That is to say, the visual recognition process
in both networks is incremental and move from simple to
abstract. At this point, it is essential to note that we can-
not compare the topology and functionality of a CNN to
the complexity of the neuronal connections of a real brain.
We only used this technique to provide a simple topology that
is then implemented in a neuronal simulator to evaluate how
attacks over a simplistic but realistic environment can affect
the activity of simulated neurons, as indicated in Section V-C.
In this context, we designed a simple proof of concept

based on the idea of a mouse that has to solve the problem of
finding the exit of a particular maze, inspired in the code from
[34]. The mouse must find the exit with the smallest number
of movements and starting from any position. We define a
maze of 7 × 7 coordinates, as represented in FIGURE 5.
It contains one starting position identified with ‘‘1’’, while
the exit is labeled with ‘‘27’’. Moreover, the positions colored
in gray represent obstacles, and those in white are accessible
positions throughwhich themouse canmove. In this scenario,
the mouse can move in all four 2D directions: up, down, left,
and right. The numbering from 1 to 27 defines the optimal
path determined by the trained CNN to reach the exit position,
considering the lowest number of steps. Finally, it is essential
to define the concept of visible position. From each particular
cell of the maze, the mouse can visualize a square of 3 × 3
adjacent positions, including those that represent obstacles.
This situation is highlighted in FIGURE 5 with a red square,
indicating the visible positions from the cell 15 of the optimal
path.

FIGURE 5. Maze used in our use case to model the movement of the
mouse, including the optimal path between the starting and final cells.
There are nine visible positions from the cell 15, highlighted within a red
square.

TABLE 1. Summary of the layers of the CNN.

B. CONVOLUTIONAL NEURAL NETWORK
Our objective was to generate a CNN able to exit the maze
from any position. We also aimed to define a topology
with a reduced number of nodes to be compatible with
resource-constrained neuronal simulators since we aim to
evaluate this topology in multiple simulators. Nevertheless,
for simplicity, this work includes details of the implemen-
tation in only one simulator, as described in Section V-C.
To solve our maze problem, we implemented a CNN com-
posed of two convolution layers and a dense layer. The
ensemble of these three layers defines a complete CNN
of 276 neurons, representing a small portion of a mouse pri-
mary visual cortex, summarized in Table 1. We implemented
this CNN using Keras on top of TensorFlow [35].
FIGURE 6 depicts the architecture of the implemented

CNNwhich is also described in Table 1. In particular, we have
included a first 2D convolution layer with a 3×3 kernel. This
layer takes as input the current status of the maze, focusing
each neuron on a square of 9 (3×3) adjacent positions. In our
experiments we determined that 8 filters of size 3× 3 in each
layer were sufficiently expressive. To represent the maze,
each position contains a 1 value if the position is accessible,
a 0 value if it is an obstacle, or a 0.5 value in the position of
the mouse.
During the training, each filter of the first layer specializes

on a particular aspect of the maze. For example, a filter
could focus on detecting vertical walls, while another could
detect corners. The filters of the second layer can detect more
complex scenarios by composing the output of these initial
detectors. Since the input is a 7 × 7 maze, and the kernel
is 3 × 3, the first convolution process requires 25 neurons
(5 × 5 kernel outputs) to cover the new 5 × 5 subset of the
maze on the next layer. Since we use 8 different filters, the
total number of neurons required to produce the first layer’s
output of the CNN is 200 (5 × 5 × 8). This is illustrated in
FIGURE 6, where each group of neurons has a different color
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FIGURE 6. Visual representation of the implemented CNN. It introduces a
simplifications of the whole topology, indicating how the convolution
process is performed and how nodes connect between layers. The color
of each node matches the color of its associated filter.

that matches the color of its filter. Therefore, since the first
layer generates an output of size 5× 5× 8, the application of
the 3× 3 kernels of the second convolutional layer requires a
total of 72 (3×3×8) neurons. Finally, this new output is sent
through a last dense layer of 4 neurons, one for each possible
movement direction on the maze (left, up, right, down). Each
output is an estimation of the probability of success with
each movement, being selected the direction with the greatest
score.
In order to understand Section V-C and Section VI, it is

necessary to explain the mapping between the sequential
number of each neuron and its position in its associated filter
output. FIGURE 6 shows this mapping. Each neuron have
associated a 3-dimensional vector, where the third coordinate
is its filter and the two first coordinates, the position in that
filter output. The order is as follows: the first neuron has the
coordinates [0,0,0], corresponding to the first neuron in the
first filter output; the eighth neuron corresponds to [0,0,7];
the ninth one is [0,1,0], and so on until the 200th neuron, with
coordinates [4,4,7].

C. BIOLOGICAL NEURONAL SIMULATION
After training the CNN, we represented its resulting topology
in Brian2, a lightweight neuronal simulator [36]. We selected

TABLE 2. Relationship of parameters between artificial and biological
networks.

Brian2 because it is adequate to run neuronal models in
user-grade computers, without the requirement of using mul-
tiple machines, or even supercomputers. It also presents
a good behavior in the implementation of neuron models
with simplified and discontinuous dynamics (such as Leaky
Integrate-and-Fire or Izhikevich) [37]. Other alternatives,
such as NEURON, present complex solutions to model neu-
rons with fine granularity, offering distributed computation
capabilities for high demanding simulations. Nevertheless,
this functionality is unnecessary in our particular study.
We maintain in the biological simulation the exact number

of layers, the number of neurons per layer, and the topo-
logical connections between neurons. However, there is a
crucial difference between the implementation of these two
approaches. In the CNN, a filter weight represents the impor-
tance that a connection between two neurons of different
layers have on the topology and, thus, over the solution.
In the biological simulation, we transform the CNN weights
to synaptic weights, representing the increase of the voltage
induced during an action potential. Table 2 summarizes these
similarities and differences between both networks.
To represent the behavior of each neuron, we decided to

use the Izhikevich neuronal model since it is computationally
inexpensive, and it allows us to precisely model different
types of neurons within different regions of the brain [38].
This model represents an abstraction of how cortical neurons
behave in the brain. In particular, the following set of equa-
tions describes the Izhikevich model, whose parameters are
indicated in Table 3. This model allows multiple configura-
tions to mimic different regions of the brain. In our scenario,
we assigned particular values to the previous parameters
to implement a regular spiking signaling from the cerebral
cortex, as indicated in [38]. Specifically, we aimed to model
pyramidal neurons from the primary visual cortex of a mouse,
which correspond to excitatory neurons typically present in
the biological visual layers L2/3, L5, and L6 [39]. For sim-
plicity, during the analysis of the results of the simulation,
we will refer to these layers in subsequent sections as first
layer (L2/3), second layer (L5) and third layer (L6).

v′ = 0.04v2 + 5v+ 140+ u+ I (1)

u′ = a(bv− u) (2)

if v > 30mV , then

{
v, ← c
u, ← u+ d

(3)
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TABLE 3. Parameters used in the Izhikevich model.

To create our neuronal topology, we used the weights of
the trained CNN as post-synaptic voltage values, normalized
within the range between 5mV and 10mV . We selected this
range because these values constitute a conservative voltage
raise within the range of values of v, indicated in Table 3.
At the beginning of the simulation, we assigned the initial
voltage of each neuron from a previously generated random
list in the range [−65mV , 0mV ). This initial value for each
neuron is constant between executions to allow their compar-
ison. To define a more realistic use case, we represented in
our simulation the movement of the mouse inside the maze
(see FIGURE 5), staying one second in each position of the
optimal path. To understand this, it is essential to introduce
the concept of intervening neurons, which defines the set of
neurons managing all the visible positions of the mouse when
it is placed in a particular position of the maze. FIGURE 7a
illustrates the relationship between the position 13 of the
optimal path and its intervening neurons, not considering
its related visible positions for simplicity. For this position,
we define nine 3× 3 squares within the surface delimited by
the red square, where we represent only the first two squares
to improve the legibility of the figure. Focusing on the first
square, colored in blue, it comprises eight neurons indexes
(49 to 56), obtained from the translation between 3-dimension
coordinates previously commented in this section. The sec-
ond one, highlighted in orange, associates eight different neu-
rons. After applying all nine squares, we obtain the complete
list of intervening neurons related to the position 13. This
single process is repeated for every visible position from
the position 13 (indicated in FIGURE 7a with red dots),
obtaining the complete set of intervening neurons. This set
of intervening neurons is presented in Table 4, where each
visible position from the position 13 is identified by its maze
coordinate for simplicity. The last row of the table presents
the complete set of intervening neurons for the position 13,
obtained as the union of all individual sets of neurons.
The movement of the mouse was implemented by

providing external stimuli to the simulation via the I param-
eter, where a value of 15mV was assigned to all interven-
ing neurons from the current location of the mouse. For all
non-intervening neurons in a specific instant, we assigned a
value of 10mV . These values align with the range defined in
[38]. This information was extracted from the topology of the
CNN, which contains the relationship between the neurons
of the first layer and the positions of the maze. We took
into consideration these aspects in the experimental analysis
performed in Section VI. Based on that, we modeled with a

FIGURE 7. Relationship between positions of the maze and its
implication in the modulation of neuronal signaling.

TABLE 4. List of intervening neurons associated to the position 13 of the
optimal path of the maze.

higher value of I those intervening neurons, transmitting a
more potent visual stimulus to those neurons related to adja-
cent positions from the current location. Based on Equation 1,
an increase in the I parameter will produce a voltage rise in
these intervening neurons, generating a raise in the amplitude
of the electrical signal. This behavior wasmodeled taking into
consideration the study performed in [40], which indicates
that a known visual stimulus generates a voltage amplitude
increase. FIGURE 7b graphically compares these differences
between values of the I parameter. It highlights that inter-
vening neurons present a higher number of spikes during a
particular temporal window, which is interpreted by the brain
as the reconnaissance of accessible cells in the maze from the
current position.
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FIGURE 8. Summary of our use case, indicating the translation between the topology of the CNN
implemented and the biological network simulated.

Finally, FIGURE 8 introduces a graphical summary of
the current use case. It depicts a mouse with a miniature
brain implant solution in its primary visual cortex, such as
Neuralink or Neural dust. To simulate its biological neuronal
network, and based on a lack of realistic cortical topologies,
a trained CNN provides the number of nodes and distribution
in layers for the biological network. In particular, wemodeled
pyramidal neurons from visual layers L2/3, L5, and L6, using
the Izhikevich model with a regular spiking signaling. Based
on this scenario, an external attacker takes advantage of con-
temporary vulnerabilities in these implantable solutions to
alter the behavior of the spontaneous activity of the biological
neuronal network.

VI. RESULTS ANALYSIS BASED ON METRICS
In this section, we evaluate the impact that FLO and SCA
cyberattacks have on spontaneous neuronal activity of the
neuronal topology presented in SectionV. To analyze the evo-
lution of the cyberattacks impact while the mouse is moving
across the maze, we consider the following three metrics:
• Number of spikes: determine if a cyberattack either
increases or reduces the quantity of spikes compared to
the spontaneous neuronal signaling.

• Percentage of shifts, being a shift the delay of a spike
in time (forward or backward) compared to the sponta-
neous behavior: study if a cyberattack generates signifi-
cant delays in the normal activity of the neurons.

• Dispersion of spikes in both dimensions of time and
number of spikes: analyze the spiking patterns under
attack, aiming to detect if the cyberattack causes a mod-
ification on the distribution of the spikes.

For each layer of the topology, and combining all of
them, we measured and analyzed the number of spikes and

percentage of shifts. Finally, the dispersion of spikes is com-
puted for each position of the optimal path and grouping all
layers. Finally, we compared the impact generated by both
cyberattacks.
To better understand the impact of FLO and SCA cyberat-

tacks, FIGURE 9 compares the evolution of neuronal spikes
for the spontaneous activity, a FLO cyberattack and an SCA
cyberattack. We selected three positions of the optimal path
to analyze in detail the spiking evolution along with the
simulation, presenting only the first 100ms of each position.
It is essential to note that this simplification is only for this
figure, and all the results subsequently presented consider the
complete duration of each position. As can be seen, in the
spontaneous signaling, there is a certain natural dispersion
caused by the behavior of the neuronal model used, and the
movement of the mouse (due to the the modification of the
associated I parameter). Specifically, each time the mouse
changes from one position to another, the I parameter changes
according to the intervening neurons, where a higher value of
I is translated to a higher spike rate (see Algorithm 1). Since
the mouse periodically changes its position, it modifies the
spiking rate of the neurons, generating a natural dispersion in
the absence of attacks. Looking at the first position of both
spontaneous and FLO, in the instant 50ms, there is a clear
difference between them, since we executed the attack in that
exact instant. The set of attacked neurons generates spikes
before it was intended due to the voltage rise produced by the
attack. Consequently, we can see that the dispersion over the
following positions (13 and 27) augments, altering the nat-
ural pattern of the neurons. Regarding the SCA cyberattack,
it also starts in the instant 50ms but, its impact it is not yet
present in the first 100ms of the initial position. If we check
the subsequent positions, the attack gradually propagates,
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FIGURE 9. Raster plots indicating the evolution of the spontaneous signaling and both FLO and SCA cyberattacks for three positions of the optimal path
of the maze.

generating characteristic ascending patterns. Subsequent sub-
sections analyze, in a more detailed way, the information
contained in FIGURE 9, extending the analysis to all the
positions of the optimal path and using the previous three
metrics.

A. NEURONAL FLOODING
In this subsection, we aim to simultaneously attack multiple
neurons and analyze its impact using the metrics previously
indicated at the beginning of the section. The implementation
of this cyberattack is based on the general description indi-
cated in Algorithm 1. We decided to perform only the attacks
over the first layer of the topology, from where each target
neuron is randomly selected, to evaluate the propagation to
deeper layers. Furthermore, we tested a combination of two
additional parameters. The first one represents the number of
simultaneously attacked neurons, k ∈ {5, 15, . . . , 95, 105}.
AN will contain k neurons randomly selected from NE, the
set of neurons in the first layer. It is worthy to note that
we reached to attack simultaneously more than half of the
neurons of the first layer, which represents a fairly aggres-
sive portion of the neurons. The second parameter of the
attack, VI = {20, 40, 60}, indicates the different voltage
increases in mV used to stimulate the neurons in AN. Its
maximum level, 60mV , approximately represents two-thirds
of the voltage range defined by the Izhikevichmodel.We have
executed each combination of parameters 10 times, denoted
as exec = 10, to ensure that the random selection of neurons
performed is representative. The value of tsim is 27s (one
second per position of the optimal path), and tattk, is 50ms.
Table 5 summarizes the previously indicated parameters.

TABLE 5. Configuration of the implemented FLO cyberattack.

FIGURE 10. Number of intervening neurons related to visible positions
from each position of the optimal path.

1) NUMBER OF SPIKES METRIC
To better understand the analysis of this metric, it is necessary
to introduce FIGURE 10, which shows, for each position of
the optimal path of the maze, the number of intervening neu-
rons involved in the decision-making process of the mouse.
Since these intervening neurons are dependent on the number
of visible positions from a particular location of the maze,
the number of intervening neurons is higher in central cells
of the maze compared to those placed near the borders.
Moreover, intervening neurons are dependent on the topology
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FIGURE 11. Total number of spikes for all neurons of the topology per
position of the optimal path, attacking different number of neurons (105
and 55 simultaneous neurons).

used and the convolution process of the CNN, as depicted in
FIGURE 6.
FIGURE 11 compares, for the spontaneous signaling

and two different configurations of FLO, the total number
of spikes per position of the optimal path. In particular,
the graph plots two different amounts of neurons in AN
(55 and 105 neurons) for all exec simulations. In this figure,
we fixed vi to a value of 40mV to improve its visualization.
As can be seen, both figures share a common tendency,
indicating that the higher the number of intervening neurons
from a position, the higher the number of spikes. This is a
consequence of how the mouse moves across the maze and
how neurons and positions are related based on our particular
topology. Comparing both figures, FIGURE 10 reaches its
highest peaks one position before, since this change of inter-
vening neurons needs to be propagated in time, affecting the
number of spikes of its following position.
In FIGURE 11, we can see that, in general, FLO cyber-

attacks reduce the number of spikes compared to the spon-
taneous activity, increasing this reduction when the mouse
progresses in the maze. Furthermore, increasing the impact
of the attack, in terms of the number of attacked neurons,
reduces the number of spikes. These aspects are aligned with
the results later presented in Section VI-A3, where this reduc-
tion is caused by an increase of the dispersion in the attacked
neurons. However, it is worth noticing the high number of
spikes produced in the first position. The Izhikevich neuronal
model for regular spiking generates a quick burst of spikes
in a short time, and, after that, it stabilizes its spike rate,
explaining this behavior. When we apply a FLO cyberattack,
the attacked neurons anticipate their spikes, producing either
a raise of spikes if the number of attacked neurons is not so
elevated (low dispersion in time), or a reduction of spikes if
most of the neurons are attacked (high dispersion). Moreover,
the evolution of the simulation after the attack does not tend
to come back to the spontaneous signaling, in terms of the
number of spikes. In fact, these distances augment over time,
reaching a difference of around 700 spikes in position 27, with
some variability between both FLO configurations. Based
on that, these results indicate that the effect of attacking
neurons in a particular instant propagates until the end of the
simulation.

FIGURE 12. Evolution of the mean of spikes with different number of
attacked neurons and voltage increases, aggregating all positions of the
optimal path.

After this analysis, we considered relevant to evaluate
how the mean of spikes evolved through the three layers
of the topology with different configurations of the FLO
cyberattack. In particular, we tested different amounts of
attacked neurons and voltage increase, with exec different
executions for each combination of the previous parameters.
Using exec executions introduces variability in terms of the
randomly selected neurons for each execution. We present
these results in FIGURE 12, which represents an aggrega-
tion of the number of spikes produced during the optimal
path of the maze. It indicates that increasing the number of
attacked neurons derives in a higher reduction in the number
of spikes, while the application of different voltages does
not produce a high impact. The dimmed colors surrounding
the main lines of the figure indicate the fluctuations between
the exec simulations. As can be seen, the difference in the
mean of spikes compared to the spontaneous signaling grows
when the number of attacked neurons raises, having a differ-
ence of around 60 spikes for 110 attacked neurons (half of
the first layer). These results align with those presented in
FIGURE 11 for the positions of the optimal path, where both
figures present a clear descending trend when the number
of attacked neurons augments. Finally, the use of different
increases of voltage during the experiments did not generate
a considerable impact on the number of spikes.
To expand the focus on this analysis and to determine

whether this descending trend is exclusive to only certain lay-
ers, FIGURE 13 analyzes the same parameters but differen-
tiating between the three layers of the topology and focusing
only on the last position of the optimal path of the maze.
We can see that the variation of the mean of spikes is more
significant in deeper layers (2nd and 3rd). This variation is
due to the distribution of our topology and the normal behav-
ior of the brain, where initial layers propagate their behavior
to subsequent layers, magnifying their activity via synapses.
The y-axis range considerably differs between layers, being
the difference with the spontaneous signaling of less than one
spike in the first layer. The second layer offers a broader range
of around 8 spikes in the most damaging situation, whereas
the third layer has an approximate separation of between 10 to
25 spikes.
In summary, the previous figures indicate that, under

attack, the mean of spikes decreases compared to the
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FIGURE 13. Mean of spikes for each layer of the topology, focusing on
the last position of the optimal path.

spontaneous behavior. In particular, we highlight that increas-
ing the number of attacked neurons derives in a higher impact
in the mean of spikes. Nevertheless, there are no significant
differences in the variation of the voltage used to attack the
neurons. Finally, the number of intervening neurons from the
visible positions of the optimal path of the maze strongly
influences the mean of spikes.

2) PERCENTAGE OF SHIFTS METRIC
For this metric, we first evaluated the percentage of delayed
shifts for an aggregation of all three layers. After that, we ana-
lyzed the same but combining all the positions of the optimal
path of the maze. In this test, we included a different number
of attacked neurons and voltage raises. FIGURE 14 describes
this situation, where attacking a higher number of neurons
produces a higher percentage of shifts. This ascending trend
is aligned with the dispersion metric, since an enlargement
in the parameters of the attack produces a growth of shifts.
As a consequence, it generates a higher dispersion in time
and number of spikes.
If we focus on each layer of the topology, FIGURE 15 rep-

resents a FLO cyberattack for the last position of the optimal
path, where each color line indicates a voltage raise. Focusing
on the first layer, we can see a linear growthwhenwe augment
the number of attacked neurons since only those neurons shift
in the layer. Moving to subsequent layers, we can observe that
the growth tendency is more prominent in the second layer.
This indicates that, when we advance to the third layer, the
effect of the attack gets slightly attenuated.
In conclusion, this metric indicates that attacking more

neurons derives in a higher percentage of shifts. Additionally,
and similarly to the metric studying the number of spikes,
voltage increases have not a high impact on our scenario.

3) DISPERSION METRIC
We first focus on the spike dispersion over time caused by
the different number of attacked neurons for each position of
the optimal path. This means that, for each position of the

FIGURE 14. Shift percentage mean for an aggregation of all topological
layers and positions of the optimal path.

FIGURE 15. Shift percentage mean for each layer of the topology, for the
last position of the optimal path.

maze, we obtain the number of time instants with recorded
spikes, independently of the number of spikes. If we take
into account that each position of the maze corresponds to
one second and that the sampling rate of Brian2, by default,
is 0.1ms, we have a total number of 10 000 instants per
position. If a position presents a higher dispersion value than
other positions, it indicates that there are more instants with
spikes in the former one. We focus on a voltage raise value of
40mV , since previous analysis indicated that this parameter
has a low impact on our scenario.
In FIGURE 16 we can observe that the spontaneous sig-

naling presents some similarities with the trend existing in
FIGURE 11 and, specifically, in those positions with the most
significant peaks. If a position presents a raise in the number
of spikes, the probability of having spikes in FIGURE 16 for
a longer period of time also increases. However, the natural
dispersion of the simulation attenuates these peaks, where the
I parameter changes according to the visible positions of the
maze. Considering both FLO configurations, we can appre-
ciate an enlargement in the temporal dispersion compared to
the spontaneous behavior. FLO cyberattacks anticipate the
spikes of the attacked neurons in a given moment, generating
a higher dispersion as the simulation progresses. Specifically,
the difference with the spontaneous signaling augments over
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FIGURE 16. Spike dispersion over time for each position of the optimal
path.

time, induced by the natural variability of the mouse’s move-
ments. Although the attack with 55 neurons presents a higher
impact until position 17, from that position until the end,
the attack with 105 neurons has a higher impact from this
metric. A higher impact over the temporal dispersion when
we attackmore neurons simultaneously aligns with the results
presented in FIGURE 13 for the number of spikes. These
results are also related to those presented in Section VI-A2
for the percentage of shifts, where an intensification in these
shifts derives in a dispersion growth.
We can also consider this dispersion from the perspective

of the number of spikes. For each position of the optimal path,
we evaluate the distribution of the number of spikes, setting
the voltage increase to a value of 40mV and the number of
simultaneous attacked neurons to 105. FIGURE 17 illustrates
this distribution, where each position contains a violin plot
for both the spontaneous and under attack behaviors. It is
essential to highlight that this figure represents only one
of the exec simulations performed for the complete set of
experiments to ease the visualization. We can appreciate that
the attack in position one reaches a peak of 110 spikes due
to the increase of spikes induced by the attack performed at
that particular moment. Focusing on the distribution indicated
by each violin, the variance progressively reduces when the
mouse progresses in the maze, concentrating the distribution
of number of spikes around one. That means that in the last
positions there are more instants where only one spike occurs,
indicating that the attack increases the spike dispersion as the
simulation progresses.
This situation aligns with the results presented in

FIGURE 11, where a higher number of spikes influence this
upper threshold. Nevertheless, it is worth considering the
exception in position 13, where this threshold is consider-
ably reduced. To understand this situation, we also have
to consider FIGURE 16, which indicates that this position
presents the highest percentage of dispersion, with more than
50% of spikes shifted. This position indicates the relation-
ship between these two dispersion approaches, where a high
temporal dispersion generates a reduction in the dispersion
focused on the number of spikes.
In conclusion, FLO cyberattacks generate a large impact

on the spontaneous neuronal activity. In particular, the pre-
vious figures highlight how the mouse’s natural movement

induces particular natural dispersion, both in time and number
of spikes. Performing FLO cyberattacks also produces an
enlargement in the temporal dispersion, where the neuronal
activity is more scattered. This can also be analyzed from
the dispersion focused on the number of spikes since this
reduction on the aggregation causes the spikes to tend to a
low number. It means that there are more instants with a fewer
number of spikes compared to the spontaneous behavior.
The previous analysis, based on the number of spikes,

percentage of shifts, and dispersion, highlights the impact
that FLO cyberattacks can generate over the spontaneous
neuronal activity. We subsequently analyze these metrics
together since they are strongly dependent between them.
In particular, the application of a FLO cyberattack generates
a decrease in the number of spikes, where these differences
are more prominent in deeper layers of the topology. These
results can be explained based on the dispersion induced by
the attack, where a growth on the dispersion reduces the
probability of multiple action potentials in the first layer.
Consequently, the post-synaptic voltage raises arrive at sub-
sequent layers in a more dispersed way, delaying the spikes.
The metric focused on the percentage of shifts over the spon-
taneous signaling is closely related to the dispersion metric.
An increase in the percentage of shifts entails a modification
in the natural periodicity of the spikes. This change is directly
translated to a higher dispersion rate, both in time and number
of spikes. Finally, it is essential to note that this behavior
and results are dependent on our particular topology. Nev-
ertheless, they can serve as an example of how performing a
FLO cyberattack can affect neuronal activity in a particular
scenario.

B. NEURONAL SCANNING
This section details the implementation of an SCA cyberat-
tack on our topology, based on the general description of the
attack represented by Algorithm 2. For this particular imple-
mentation, we have sequentially attacked the 200 neurons that
compose the first layer of the topology. We denote as VI =
{5, 10, . . . , 60, 65} the set of voltage raises, in mV , applied
separately in each SCA cyberattack. As previously indicated
for the FLO cyberattack, the duration of the simulation, tsim,
is 27s, staying the mouse one second in each position of the
optimal path of the maze. Additionally, the attack initiates in
the instant 50ms, represented by tattk . To model the periodic-
ity of attacking the neurons,1t indicates the temporal separa-
tion between two attacks over two consecutive neurons, being
134ms in our particular implementation. Each combination of
parameters is executed only once (exec = 1) since there is no
variability in the selection of neurons, as it is the case of a
FLO cyberattack. Finally, Table 6 indicates a summary of the
parameters used in the implementation of SCA cyberattacks.

1) NUMBER OF SPIKES METRIC
FIGURE 18 compares the number of spikes per position of
the optimal path between the spontaneous neuronal signaling
and an SCA cyberattack. In particular, the SCA cyberattack
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FIGURE 17. Spike dispersion over the number of spikes for each position of the optimal path.

TABLE 6. Configuration of the implemented SCA cyberattack.

FIGURE 18. Total number of spikes for all neurons of the topology, per
position of the optimal path.

establishes a value of 40mV from the VI set and defines
an aggregation of all three layers of the neuronal topology.
We can appreciate the same trend observed in FIGURE 10 for
the intervening neurons from each of the studied positions.
The most prominent peaks are, as previously documented
for FLO cyberattacks, delayed one position due to the time
required to generate an impact over the neurons. These results
can be explained based on the sequential behavior of an SCA
cyberattack since the number of attacked neurons raises along
time. In addition, this progressive reduction in the number of

FIGURE 19. Evolution of the spikes mean with different number of
attacked neurons and voltage raises, for an aggregation of all positions of
the optimal path.

spikes caused by the attack aligns with the results that will be
presented in Section VI-B3 for the dispersion metric.
After this analysis, we evaluated in FIGURE 19 the mean

of the spikes for the different voltage increases defined inVI,
for an aggregation of the three layers of the topology and the
positions of the optimal path. We can appreciate that increas-
ing the voltage used to overstimulate the neurons produces
a reduction in the number of spikes. It should be noticed
that rises higher than 20mV do not significantly influence
the impact of the attack. Performing an SCA cyberattack
with a voltage of 60mV , the most damaging situation consid-
ered, reaches the highest difference in the number of spikes,
around 70 spikes compared to the spontaneous behavior.
FIGURE 20 presents a differentiation per layer of the

topology for the last position of the optimal path. We can
appreciate that, in the first layer, the variation in the number
of spikes between different voltage increases is negligible,
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FIGURE 20. Spikes mean for each layer of the topology, focusing on the
last position of the optimal path.

being in all cases 24 spikes. Until 15mV , it presents a small
growth of spikes compared to the spontaneous signaling,
which benefits of the anticipation of the spikes in time.
In more aggressive voltages, the number of spikes gets more
reduced than the spontaneous behavior. Moving to the sec-
ond layer, these differences become more significant, with a
number of spikes ranging between 2 and 14 spikes according
to the voltage used. This layer presents a general descending
trend, reaching the most damaging peak with 20mV . This
trend is common to the third layer, although the range in the
number of voltages becomes broader, with a higher difference
of 40 spikes compared to the spontaneous signaling. It is
interesting to highlight the proliferation of spikes in the third
layer when using 5mV , based on the slight anticipation of
spikes in time from the previous layers.
Comparing these results to those presented in FIGURE 19,

we can appreciate in the latter specific differences in the
evolution of the impact. In this figure, the most damaging
voltage is 60mV , compared to the 20mV highlighted for
the second and third layers presented in FIGURE 20. This
situation is explained by the fact that the analysis focused
on differentiating the layers only considers one position and,
because of that, some minor differences can arise.
In conclusion, the previous results indicate that performing

an SCA cyberattack generates a reduction in the number of
spikes, aggravated when the mouse moves across the maze.
Increasing the voltage used to overstimulate the neurons does
not produce a significant impact with voltages higher than
20mV . Finally, the number of intervening neurons from each
position of the optimal path influences this metric.

2) PERCENTAGE OF SHIFTS METRIC
FIGURE 21 first presents the results concerning the per-
centage of shifts for different voltage raises. These results
represent an aggregation of the three layers and all the posi-
tions of the optimal path. In particular, this figure indicates
that the percentage of shifts increases when we raise the
voltage used to attack the neurons. We can see that an

FIGURE 21. Shift percentage mean for an aggregation of all topological
layers, aggregating all positions of the optimal path.

overstimulation of 5mV generates an approximate 58% of
shifts. Slightly increasing this voltage generates considerable
impacts, between the range of 5mV and 20mV , reaching a
close percentage of 68%. Finally, increasing the stimulation
with voltages higher than 20mV does not significantly enlarge
the percentage of shifts. These thresholds align with those
presented in FIGURE 19 for the aggregated number of spikes.
To further explore this metric, we have represented in

FIGURE 22, a differentiation of each layer of the topology
for just the last position of the optimal path. We can observe
that the range of shifts is lower in the first layer compared
to deeper layers, based on the influence that the first layer
has on the latter due to the transmitted action potentials.
Besides, the growth trend existing in the first layer is more
prominent, being similar to the one shown in FIGURE 21 for
the aggregated analysis of shifts. When we go deeper into
the number of layers, we can see that the growth trend is
not that aggressive using low voltages, which indicates that
the attack progressively loses its effectiveness. It is important
to highlight that the ranges shown in FIGURE 21 for the
percentage of shifts are much higher than those presented
in FIGURE 22. To understand this situation, it is worthy
of reflecting on the behavior of SCA cyberattacks. In the
first positions of the optimal path, only specific neurons are
attacked. When the attack progresses along time, the number
of neurons affected by the attack continues increasing. Based
on that situation, this last figure focused on the layers presents
higher ranges, since they correspond to the last position of the
optimal path and, thus, all 200 neurons of the first layer have
been affected.
In conclusion, performing an SCA cyberattack generates a

raise in the percentage of shifts. This impact becomes more
damaging when the mouse moves across the maze since the
number of attacked neurons is more abundant along time.
Besides, we can observe a degradation of the impact of the
attack in deeper layers, where higher voltages are needed to
cause a similar impact in terms of shifts.

3) DISPERSION METRIC
Focusing on the temporal dispersion caused by an SCA cyber-
attack, FIGURE 23 presents its analysis for each position of
the optimal path and the aggregation of all the neurons of the
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FIGURE 22. Shift percentage mean for each layer of the topology, only
focusing on last position of the optimal path.

FIGURE 23. Spike dispersion over time for each position of the optimal
path.

topology. We can observe that performing an SCA cyberat-
tack progressively augments the temporal dispersion, based
on the incremental number of attacked neurons over time.
In particular, this dispersion is not significant in the first five
positions of the optimal path, due to the number of attacked
neurons until that moment and the specific connections of our
topology.
After that, we analyze in FIGURE 24 the dispersion from

the perspective of the number of spikes. In particular, we rep-
resent, for each position of the optimal path, a violin distribu-
tion of how the spikes behave.We can observe that, in the first
five positions, there are no significant visual differences in
the distributions, although the median of the distribution start
to slightly decrease. This is justified by the reduced number
of neurons affected by the attack until that instant. After
that position, the differences with the spontaneous behavior
progressively augment, both in the peaks in the number of
spikes and the shape of the violins. Focusing on the number of
spikes, themaximum number of simultaneous spikes presents
a reduction, particularly in the last positions. The shape of
the violins progressively changes, due to a reduction in their
variance, where the number of spikes concentrates at the
value of one only spike. That is to say, the majority of the
instants in the last positions had only one spike. These results

are aligned to those presented in FIGURE 23 for the analysis
of the temporal spike dispersion, since both figures indicate
that this dispersion increases when the mouse progresses in
the maze.
In summary, this metric indicates that performing an SCA

cyberattack disrupts the normal neuronal spiking frequency,
inducing dispersion in both temporal and number of spikes
dimensions. These differences aggravate when the mouse
progresses in the maze, based on the sequential functioning
of SCA cyberattacks.
The previous three metrics highlight how SCA cyberat-

tacks can affect the spontaneous neuronal activity on our
particular topology.We should consider them as different per-
spectives to analyze a common issue. As previously indicated,
an SCA cyberattack progressively induced a decrease in the
number of spikes over time, aggravated in deeper layers of the
topology. This decrease is strongly related to both dispersion
metrics. The attack generates an alteration in the frequency
of spikes in time, producing more instants with spikes in
the simulation. Specifically, the previous results indicate that
in the last positions of the maze, most of the instant only
have one spike, which generates a clear difference with the
spontaneous activity. The dispersionmetric is strongly related
to the percentage of shifts since this dispersion will cause
a displacement of the spikes in time. In terms of shifts, the
attack gets attenuated in deeper layers.

C. IMPACT COMPARATIVE BETWEEN NEURONAL
FLOODING AND SCANNING
This last section compares the results previously discussed
for FLO and SCA cyberattacks. Focusing on the total number
of spikes (FIGURE 11 and FIGURE 18), we can observe
that an SCA cyberattack generates a more impacting reduc-
tion in the number of spikes than the most aggressive FLO
configuration. The last positions particularly highlight these
differences.
When we analyze the number of spikes aggregating both

positions and layers (FIGURE 12 and FIGURE 19), we can
appreciate one of the main differences between the attacks.
In FLO cyberattacks, we can define as parameters of the
attack the number of neurons and the voltage used to attack
those neurons. In SCA cyberattacks, we can only specify
the voltage, since our implementation affects all neurons
of the first layer. Based on that, there is not an immediate
comparison between these figures in terms of their trend.
Nevertheless, we can compare the most aggressive configura-
tion for each attack to determine which produces the highest
reduction of spikes. We can see that SCA presents a slightly
higher impact than FLO.
Focusing on the distribution of spikes per layer

(FIGURE 13 and FIGURE 20), we can observe that there are
no significant changes between the attacks. In the second one,
SCA presents a slightly lower number of spikes. Finally, the
third layer amplifies these differences, where SCA has a more
significant reduction of spikes.
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FIGURE 24. Spike dispersion over the number of spikes for each position of the optimal path.

In terms of the percentage of shifts (FIGURE 14 and
FIGURE 21), FLO presents a higher impact on this metric.
Extending this comparison for each layer of the topology
(FIGURE 15 and FIGURE 22), we can see that the main
difference lies in the first layer, where SCA duplicates its
impact since subsequent layers present similar results. Based
on that, we can conclude that FLO presents a higher impact
on this metric, although the difference in percentages is slight.
There is a clear difference between both attacks in

terms of the temporal dispersion metric (FIGURE 16 and
FIGURE 23). FLO has a higher dispersion in the first five
positions of the optimal path since the targeted neurons neu-
rons are all attacked in the same instant. After that, SCA
evolves in a more damaging way. Focusing on the dispersion
based on the number of spikes (FIGURE17 and FIGURE 24),
we can observe that FLO is more effective in the first
positions.
This comparative highlights that the inner mechanisms

of each attack generates different behaviors in the neuronal
activity. FLO is adequate for attacks aiming to disrupt the
neuronal activity in a short period of time, affecting multiple
neurons in the same instant of time. On the contrary, SCA is a
more effective attack for long-term effects, requiring a certain
amount of time to reach a significant impact on the neurons.
From that threshold, the impact caused on the neurons is more
concerning.

VII. CONCLUSION
This work first presents security vulnerabilities of micron-
scale BCI to cyberattacks, particularly for implants that can
do single-cell or small population sensing and stimulation.
Taking these vulnerabilities as a starting point, we describe

two novel neural cyberattacks focused on the alteration
of neuronal signaling. In particular, we investigated the
Neuronal Flooding (FLO) and Neuronal Scanning (SCA),
inspired by well-known approaches found in the cyberse-
curity field. Our investigation is based on a case study of
a mouse that learns its navigation within a maze trained
by a Convolutional Neural Network (CNN). The CNN was
converted into a biological neuronal simulation model rep-
resenting the workings and functions of real neurons within
the brain. The two attacks were applied to the mouse as it
migrated through the maze. To evaluate the impact of these
attacks on neuronal activity, we proposed three metrics: num-
ber of spikes, percentage of shifts, and dispersion of spikes,
both over time and number of spikes.
A number of experiments have demonstrated that both

attacks can alter the spontaneous neuronal signaling, where
the behavior of these attacks generates distinct differences.
FLO attacks all targeted neurons in the same instant of time,
while SCA presents an incremental behavior, which requires
more time to affect the neuronal activity. Focusing on the
results, SCA presents a more damaging impact in terms of
the number of spikes, which generates a higher reduction
than FLO. In terms of shifts, FLO causes more spikes to
differ in time than SCA, although these differences are not
very significant. Finally, SCA presents a higher impact on the
dispersion of the neurons, both in time and number of spikes.
These results are highly dependent on the topology used, the
neuronal model utilized to represent the neurons, and the
types of neurons used (pyramidal from the primary visual
cortex). Because of that, this work should be considered as
a first step in the study of cyberattacks affecting spontaneous
neuronal signaling.
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As future work, we plan to define a taxonomy of neu-
ronal cyberattacks affecting not only overstimulation but also
neuronal activity inhibition. We aim to explore how neural
cyberattacks can affect realistic neuronal tissues and, in par-
ticular, various neural circuits within the cortex. Our research
lays the groundwork for security countermeasures to also be
integrated into BCI systems that utilize miniature implants
for small neuronal population stimulation that can have a
tremendous effect on the brain.
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Abstract

Invasive Brain-Computer Interfaces (BCIs) are extensively used in medical application sce-
narios to record, stimulate, or inhibit neural activity with different purposes. An example
is the stimulation of some brain areas to reduce the effects generated by Parkinson’s dis-
ease. Despite the advances in recent years, cybersecurity on BCIs is an open challenge since
attackers can exploit the vulnerabilities of invasive BCIs to induce malicious stimulation or
treatment disruption, affecting neuronal activity. In this work, we design and implement a
novel neuronal cyberattack called Neuronal Jamming (JAM), which prevents neurons from
producing spikes. To implement and measure the JAM impact, and due to the lack of real-
istic neuronal topologies in mammalians, we have defined a use case using a Convolutional
Neural Network (CNN) trained to allow a simulated mouse to exit a particular maze. The
resulting model has been translated to a biological neural topology, simulating a portion
of a mouse’s visual cortex. The impact of JAM on both biological and artificial networks
is measured, analyzing how the attacks can both disrupt the spontaneous neural signaling
and the mouse’s capacity to exit the maze. Besides, another contribution of the work
focuses on comparing the impacts of both JAM and FLO (an existing neural cyberattack),
demonstrating that JAM generates a higher impact in terms of neuronal spike rate. As a
final contribution, we discuss whether and how JAM and FLO attacks could induce the
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a b s t r a c t 

Invasive Brain-Computer Interfaces (BCIs) are extensively used in medical application sce- 

narios to record, stimulate, or inhibit neural activity with different purposes. An example is 

the stimulation of some brain areas to reduce the effects generated by Parkinson’s disease. 

Despite the advances in recent years, cybersecurity on BCIs is an open challenge since at- 

tackers can exploit the vulnerabilities of invasive BCIs to induce malicious stimulation or 

treatment disruption, affecting neuronal activity. In this work, we design and implement a 

novel neuronal cyberattack called Neuronal Jamming (JAM), which prevents neurons from 

producing spikes. To implement and measure the JAM impact, and due to the lack of realis- 

tic neuronal topologies in mammalians, we have defined a use case using a Convolutional 

Neural Network (CNN) trained to allow a simulated mouse to exit a particular maze. The re- 

sulting model has been translated to a biological neural topology, simulating a portion of a 

mouse’s visual cortex. The impact of JAM on both biological and artificial networks is mea- 

sured, analyzing how the attacks can both disrupt the spontaneous neural signaling and 

the mouse’s capacity to exit the maze. Besides, another contribution of the work focuses on 

comparing the impacts of both JAM and FLO (an existing neural cyberattack), demonstrating 

that JAM generates a higher impact in terms of neuronal spike rate. As a final contribution, 

we discuss whether and how JAM and FLO attacks could induce the effects of neurodegener- 

ative diseases if the implanted BCI had a comprehensive electrode coverage of the targeted 

brain regions. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Brain-Computer Interfaces (BCIs) are devices providing bidi- 
rectional communication channels between the brain and 

external devices. One of the primary uses of BCI technolo- 

∗ Corresponding author. 
E-mail address: slopez@um.es (S.López Bernal). 

gies is in health scenarios, where clinicians acquire rele- 
vant information about the brain for diagnosis purposes 
( Lebedev and Nicolelis, 2017 ). Additionally, BCI systems en- 
able artificial stimulation and inhibition of neuronal activity 
( Yao et al., 2019 ). In particular, neurostimulation has been used 

in a wide variety of medical scenarios, ranging from treat- 
ing neurodegenerative diseases, such as Parkinson’s or de- 
pression ( Hartmann et al., 2019 ), to provide prosthetic users 
with feedback ( O’Doherty et al., 2011 ). Within these systems, 

https://doi.org/10.1016/j.cose.2021.102534 
0167-4048/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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there are two main categories based on their invasiveness. 
Non-invasive BCIs can externally stimulate the brain without 
surgery and, although some technologies can target small ar- 
eas of the brain, non-invasive BCIs cover larger regions of the 
brain. In contrast, invasive systems can be applied to small 
areas, even with a single-neuron resolution, but introducing 
higher physiological risks ( Ramadan and Vasilakos, 2017 ). 

Based on the relevance and expansion of BCIs, new tech- 
nologies and companies have emerged in recent years, fo- 
cusing on developing new invasive systems to stimulate the 
brain with neuronal granularity. This is the case of Neuralink 
( Musk and Neuralink, 2019 ), a company that has designed dis- 
ruptive BCI systems to record data at the neuronal level, and 

it is currently working on covering the stimulation functional- 
ity. Besides, Neural Dust ( Seo et al., 2013 ) is an architecture of 
millions of nanoscale implantable devices located in the cor- 
tex that allow neural recording. Evolution of Neural Dust is 
the Wireless Optogenetic Nanonetworking device (WiOptND) 
( Wirdatmadja et al., 2017 ), which uses optogenetics to stim- 
ulate the neurons. Although these approaches are promis- 
ing, the authors of Bernal et al. (2020) have shown that they 
have vulnerabilities that could allow attackers to control both 

systems and perform malicious stimulation actions, altering 
spontaneous neuronal signaling. Depending on the coverage 
of the attack, in terms of brain regions and number of neurons 
affected, cyberattackers could inflict permanent brain damage 
or even cause the death of the patients. 

In the same direction, Bernal et al. (2021) identified that 
the field of cybersecurity in BCI is not mature enough, and 

non-sophisticated attacks can generate significant damage. In 

summary, the BCI vulnerabilities could be exploited by attack- 
ers to take advantage of these promising neurostimulation 

technologies. Taking the findings of these works as motiva- 
tion, this manuscript focuses on the scarce research dealing 
with cyberattacks aiming to alter neuronal behavior. Addition- 
ally, new ways to measure and understand the impact of these 
attacks are also required. In particular, these issues gain spe- 
cial relevance due to the possibility of attacks being able to 
worsen or recreate the effects of common neurodegenerative 
diseases ( Bernal et al., 2021 ). 

Intending to improve the previous challenges, the main 

contribution of this work is the definition and implementation 

of a novel neuronal cyberattack, Neuronal Jamming cyberattacks 
(JAM), focused on the inhibition of neural activity. The present 
work aims to explore the impact that inhibitory neuronal cy- 
berattacks can generate on the brain. Nevertheless, there is an 

absence in the literature of comprehensive neuronal topolo- 
gies, and therefore, we simulate a portion of the visual cortex 
of mice, placed in the occipital region of the brain, defining 
a use case of a mouse trying to exit a given maze. The neu- 
ronal topology was built by using a Convolutional Neural Net- 
work (CNN) ( Géron, 2019 ) trained to solve this particular use 
case. The second contribution of this work is the evaluation 

of the impact caused by JAM cyberattacks over both neuronal 
and artificial simulation in this specific scenario. To perform 

the analysis, we have used existing metrics but also defined 

a subset of new ones, concluding that JAM cyberattacks can 

alter spontaneous neuronal behavior and force the mouse to 
perform erratic decisions to escape the maze. 

The third main contribution of this work is to compare the 
impact caused by JAM with an existing cyberattack named 

Neuronal Flooding (FLO) from the biological and artificial per- 
spectives. We have observed that applying a FLO cyberattack 
over the last positions of the maze generates a reduction of its 
effectiveness from both biological and artificial approaches. 
Additionally, JAM cyberattacks are more damaging when in- 
creasing the number of consecutive positions under attack, 
translated into a reduction in the neural activity and an aug- 
mentation in the number of steps to find the exit. The fourth 

contribution is a comparison between biological and artifi- 
cial scenarios based on linear correlation analysis between 

variables. In this sense, FLO presents a high Pearson correla- 
tion between experiments, of around 0.8, indicating a strong 
relationship. On its side, JAM presents worse results, which 

can be explained due to the particular restrictions during the 
implementation. Finally, we discuss the relationship that re- 
cent neuronal cyberattacks could have with neurodegenera- 
tive diseases. 

These contributions aim to advance the current state of 
the art, which is limited to the references presented in this 
section. Compared to Bernal et al. (2020) , which only charac- 
terized and measured the impact of two neural cyberattacks 
(Neural Flooding and Neural Scanning), this work further ex- 
plores the impact of neural cyberattacks, presenting, for the 
first time, a comparison between the impact on neuronal and 

behavioral dimensions. 
The remainder of the paper is structured as follows. 

Section 2 reviews the state of the art in cybersecurity oriented 

to BCI and neuronal cyberattacks. After that, Section 3 intro- 
duces the definition of the Neuronal Jamming cyberattack. 
Section 4 presents the experimental setup required to im- 
plement both JAM and FLO neuronal cyberattacks. Addition- 
ally, Section 5 and Section 6 describe, respectively, the results 
obtained after implementing JAM and FLO cyberattacks over 
multiple positions of the maze and the impact they cause. 
These two sections also include a comparison of the rela- 
tionship between artificial and biological approaches. Sub- 
sequently, Section 7 discusses the impact that neuronal cy- 
berattacks can have on neurodegenerative diseases. Finally, 
Section 8 presents conclusions and future work. 

2. Related work 

Cybersecurity applied to BCI is relatively recent, emerging in 

the last five years concepts such as brain-hacking or neurose- 
curity ( Ienca, 2015; Ienca and Haselager, 2016 ). These publi- 
cations identify that neurostimulation BCI devices present a 
high risk in patients’ safety since an attacker could disrupt 
the treatment parameters. Additionally, they highlighted that 
attacks do not need to be complex to cause brain damage. 

During these recent years, the academic literature has 
widely focused on the study of cybersecurity in health sce- 
narios, aiming to preserve patients’ privacy or improving the 
security of clinical devices ( Huertas Celdrán et al., 2017; Huer- 
tas Celdrán et al., 2018 ). However, the literature has focused 

on particular cybersecurity aspects of BCI, mostly from the- 
oretical and ethical perspectives. Although previous studies 
have highlighted the applicability of cryptographic and jam- 
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ming attacks ( Ienca and Haselager, 2016 ), malware strategies 
( Bonaci et al., 2015 ), acquisition of sensitive data from neural 
signals ( Quiles Pérez et al., 2021 ), disruption of neural signals 
( Martínez Beltrán et al., 2021 ), or potential attacks over BCI ar- 
chitectures ( Ballarin Usieto and Minguez, 2018 ), these works 
are scarce and focus on particular privacy and security as- 
pects, not addressing the physical safety dimension. Addition- 
ally, the authors of Takabi et al. (2016) , Bonaci et al. (2015) iden- 
tified that the platforms and frameworks used to develop BCI 
applications could be vulnerable to cyberattacks. Based on 

that, the authors of Bernal et al. (2021) performed a review 

of the state of the art in cybersecurity on BCI with a compre- 
hensive analysis of physical safety issues, compiling already 
documented attacks over the BCI life-cycle, their impacts, and 

the countermeasures to detect and mitigate them. This work 
also studied the literature concerning attacks, impacts, and 

countermeasures from existing and prospecting architectural 
BCI deployments. Furthermore, they proposed applying well- 
known attacks, impacts, and countermeasures from the cyber- 
security domain to BCI. In a nutshell, they identified an enor- 
mous absence of works addressing cybersecurity aspects in 

BCI technologies. 
Regarding cyberattacks altering the behavior of neurons, 

the authors of Bernal et al. (2020) detected vulnerabilities in 

emerging neurostimulation technologies. They defined two 
neuronal cyberattacks , Neuronal Flooding (FLO) and Neuronal 
Scanning (SCA), aiming to disrupt the spontaneous behavior 
of the targeted zones of the brain. The FLO cyberattack con- 
sists in attacking, in a particular instant, a subset of neurons 
from the brain, while SCA targets one neuron per time instant, 
imitating the port scanning technique. They also defined sev- 
eral metrics to measure the impact of these attacks compared 

to spontaneous neuronal activity. In short, they identified that 
both neuronal cyberattacks induced a considerable alteration 

in the spontaneous neural signaling. 
The neuronal cyberattacks presented in Bernal et al. 

(2020) demonstrate the feasibility of performing attacks over 
the brain aiming to disrupt its spontaneous neural activity. 
However, they do not explore the physiological or psycho- 
logical consequences that an alteration in neural signaling 
can generate. In that direction, the authors of Bernal et al. 
(2021) theoretically proposed recreating the effect of neurode- 
generative disorders such as Parkinson’s and Alzheimer’s dis- 
eases. For that, the neurostimulation system would be re- 
quired to cover the brain regions naturally impacted by these 
diseases and present vulnerabilities that attackers can exploit. 
This work highlighted the high impact that recreating neu- 
rodegenerative disorders could have on users’ physical safety. 

To understand how cyberattacks could affect the brain and 

its relationship with degenerative diseases, it is essential to 
mention that, from a neurological point of view, most brain 

disorders are revealed as a dysfunction of communication be- 
tween neurons or with other organs defining the term of brain 
connectivity disorders . Within this term, we can include neu- 
rodegenerative diseases. Alzheimer’s Disease (AD) is a pro- 
gressive neurodegenerative disorder that induces the degra- 
dation and death of brain cells. It seems that neurodegenera- 
tive diseases spread along structurally connected neural net- 
works, known as neuronal circuits , presenting a functional rel- 
evance. There is a relationship between AD and changes in 

neuronal activity in the Default Mode Network circuit (DMN), 
where parts of the DMN present increased connectivity at the 
beginning of the disease, indicating compensation for the fail- 
ure of other regions of the circuit before they degenerate. Dur- 
ing the progression of AD, the deactivation of the DMN is grad- 
ually more pronounced. Nevertheless, it is not clear if the cir- 
cuit disruption is a cause or a consequence of the disease 
( Zott et al., 2018 ). 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease affecting cortical and spinal neurons, which gener- 
ates a loss of muscle control and paralysis. ALS is associated 

with a dysfunction of cortical circuits based on hyperexcitabil- 
ity of neuronal activity. Hyperexcitability can be understood 

as an exaggerated response to a stimulus, or the response to 
stimuli that generally do not induce a response. In this sense, 
ALS presents a perturbation in the excitatory/inhibitory bal- 
ance, leading to pathological changes in cortical excitability 
( Brunet et al., 2020 ). 

Despite the current knowledge about the behavior of neu- 
rodegenerative diseases, such as AD or ALS, there are no pro- 
posed cyberattacks in the literature trying to emulate the neu- 
ronal behavior of these conditions. Because of that, the current 
manuscript explores the possibility of inducing excitatory and 

inhibitory neuronal behavior to lay the foundation for future 
research aiming to recreate these conditions in the long term. 

3. Neuronal Jamming cyberattack 

This section presents the formal definition of the Neuronal 
Jamming cyberattack (JAM), including algorithmic and graph- 
ical representations to ease its understanding. 

Jamming is a well-known cyberattack aiming to block the 
legitimate communication between elements of a system us- 
ing malicious interference, resulting in the generation of a De- 
nial of Service (DoS) over the communication. From a neuro- 
logical perspective, we conceive a jamming cyberattack as an 

inhibition of the spontaneous activity of a set of neurons dur- 
ing a particular duration of time, preventing their interaction 

with other neurons. This attack does not need previous knowl- 
edge by the attacker about the status of the targeted neurons, 
presenting a low complexity compared to those that could re- 
quire to study their previous and current status to determine 
the best instant to attack. 

To formalize this attack, we denote NE ⊂ N as a subset of 
neurons from the brain, where n ∈ NE expresses every single 
neuron. t attk is the time instant when the cyberattack starts, 
and t pulse is the duration of the attack. During that particular 
period, a subset of neurons AN ⊆ NE is attacked. The volt- 
age of a single neuron in a specific instant of time is denoted 

as v n ∈ R , whereas v min ∈ R indicates the minimum value 
of the voltage that the neuron can have, directly dependent 
on the neuronal model used in case of simulations. Moreover, 
t win is the temporal window in which the cyberattack is eval- 
uated, which corresponds to the duration of the simulation 

presented in subsequent sections. �t is the amount of time 
between evaluations during the process, representing the du- 
ration of steps of the simulation in the implementation of the 
cyberattacks. 
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Fig. 1 – Raster plot of a JAM cyberattack when the attack is performed between the instants 10ms and 60ms. This temporal 
window is represented by a blue arrow for clarity. 

Algorithm 1 JAM cyberattack execution. 

t = 0 
while t < t win do 

if t > = t at t k AND t < (t at t k + t pulse ) then 

for all n ∈ AN do 
v n ← v min 

end for 
end if
t ← t + �t 

end while 

As shown in Algorithm 1 , JAM cyberattacks are performed 

during a continuous duration of time, where the attacked neu- 
rons are forced to have their minimum voltage value. In other 
words, it avoids the targeted neurons to produce spikes, un- 
derstood as the inhibition of the neurons. 

To visually understand the behavior of a JAM cyberattack, 
Fig. 1 presents the comparison between a JAM cyberattack and 

the spontaneous neuronal behavior for a simulation of 90ms. 
Until the instant 10 ms, green dots with a red outline can be 
appreciated, indicating that the attack has not altered those 
spikes. This attack, performed between the instants 10 ms and 

60 ms, and indicated by a blue arrow, affects all 80 neurons 
represented in the figure. Because of that, during that tem- 
poral window, only green dots are presented, having an ab- 
sence of neural activity during the application of the attack. 
After the instant 60ms, white dots with red online appear, in- 
dicating the new spikes generated as a consequence of the 
attack. It is relevant to note that, from that moment until the 
instant 90ms, the neural signaling generated by the attack is 
completely different from the spontaneous behavior. 

4. Experimental setup 

Due to the lack of realistic and precise neuronal topologies in 

the literature, this section presents the methodology followed 

to create a neuronal topology used to evaluate the impact of 
JAM cyberattacks. For simplicity, we have summarized the ex- 
planations of this section, where a broader description is avail- 
able at Bernal et al. (2020) . 

Nevertheless, it is relevant to indicate that the feasibility 
of neural cyberattacks was documented in Bernal et al. (2020) , 
where we identified that novel neurostimulation technologies 
offering recording and neurostimulation capabilities with a 
single-neuron resolution, such as Neuralink, presented vul- 
nerabilities that cyberattackers could exploit to gain access to 
the devices and, thus, disrupt the behavior of the brain. This 
work highlighted the sensitivity of using wireless communi- 
cations, such as Bluetooth, between the implants and exter- 
nal devices controlling the implant. Thus, attackers could de- 
termine the instant (or instants) of attack, the list of targeted 

neurons, and the voltage used to affect the neurons. 
It is essential to highlight that the knowledge of precise 

neocortical synaptic connections in mammalian is nowadays 
an open challenge Gal et al. (2017) . Although artificial and bi- 
ological networks cannot be comparable in complexity and 

functioning, there are works in the literature demonstrating 
that neurons in the visual cortex present certain similarities 
with a Convolutional Neural Network (CNN). In this sense, the 
visual recognition process operates incrementally in both net- 
works, moving from simple to abstract ( Kuzovkin et al., 2018 ). 
Based of that, we have trained a CNN using Keras on top of 
TensorFlow ( Chollet et al., 2015 ) to solve a simplistic scenario 
based on a mouse trying to escape a maze from any position, 
inspired in the code from Zafrany (0000) . The maze has a size 
of 7x7 positions with fixed obstacles that serve as walls, con- 
taining a single starting cell and an exit. Fig. 2 presents the 
maze, indicating with numbers the optimal path to the exit, 
which has been determined during the training process of the 
CNN. It is essential to note that this process does not involve 
any real mouse since all this testing is based on simulations. 

The CNN has been trained employing reinforcement learn- 
ing ( Sutton and Barto, 2018 ), using a topology consisting in 

three layers where the first two were convolutional layers, and 

the third one was dense. After the training process, a topology 
of interconnected nodes between layers was obtained, where 
each link had associated a filter weight. These weights repre- 
sent the relevance that this connection has in the topology to 
solve the problem. Table 1 summarizes the configuration used 

to define the CNN, composed of a total number of 276 nodes. 
The resulting topology was translated to a biological neu- 

ronal network by keeping the exact number of layers and 
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Table 1 – Summary of the layers of the CNN. 

Layer Type Filters Input size Output size Kernel size Stride Activation function Nodes 

1 Conv2D 8 7 ×7 ×1 5 ×5 ×8 3 ×3 1 ReLU 200 
2 Conv2D 8 5 ×5 ×8 3 ×3 ×8 3 ×3 1 ReLU 72 
3 Dense - 3 ×3 ×8 4 - - ReLU 4 

Table 2 – Parameters used in the Izhikevich model. 

Parameter Description Values 

v Membrane potential of a neuron [-65, 30] mV 

u Membrane recovery variable providing negative feedback to v (-16, 2) mV/ms 
a Time scale of u 0.02/ms 
b Sensitivity of u to the sub-threshold fluctuations of v 0.2/ms 
c After-spike reset value of v -65mV 

d After-spike reset value of u 8mV/ms 
I Injected synaptic currents {10, 15} mV/ms 

Fig. 2 – Maze used to model the movement of the mouse, 
including the optimal path between the starting and final 
cells. 

nodes per layer and translating the filter weights to synap- 
tic weights. These synaptic weights represent the influence 
that the firing of one neuron has on another neuron within 

a neuronal synapse. Particularly, this topology represents a 
small section of the visual cortex of a mouse, located in the 
occipital brain area. Once having the biological topology, we 
have used the Brian2 neural simulator ( Stimberg et al., 2019 ) 
to represent the behavior of each individual neuron. In par- 
ticular, we have implemented the Izhikevich neuronal model 
( Izhikevich, 2003 ), whose parameters are presented in Table 2 , 
and Eqs. (1) –(3) . It is relevant to highlight the functioning of 
the I parameter used in the experiments to model the visual 
stimuli received by the mouse in terms of free cells and walls 
in the biological simulation. To enclose the problem, we im- 
plemented and monitored a neuronal simulation with a total 
duration of 27 s, where the mouse stayed in one position of 
the optimal path for one second, and studied its spontaneous 
behavior and the behavior under attack. When the mouse is 
in a particular position, the intervening neurons associated with 

each adjacent position from the current cell were obtained. The 
concept of intervening neurons can be understood as the set of 
neurons influenced by the list of adjacent positions from the 

Table 3 – Parameters used in the analysis for JAM cyber- 
attacks. 

Parameter Values 

Number of consecutive attacked positions 
(Bio, CNN) 

{ 1 , 2 , ..., 27 } 

Number of neurons/nodes (Bio, CNN) { 5 , 35 , 55 , 75 , 105 } 
Voltage under attack (Bio) -65 mV 

Output importance (CNN) -1 
Number of executions (Bio, CNN) 10 

current cell. For those intervening neurons, the simulation as- 
signs a value of 15mV/ms for the I parameter, keeping a value 
of 10mV/ms for the rest of the neurons. These particular im- 
plementation aspects are presented in-depth in Bernal et al. 
(2020) . 

v ′ = 0 . 04 v 2 + 5 v + 140 + u + I (1) 

u ′ = a (bv − u ) (2) 

i f v � 30 mV, then 

{ 

v ← c 
u ← u + d 

(3) 

5. Impact of JAM attacks over biological and 

artificial neural networks 

Once explained the generation of the artificial and biologi- 
cal networks, this section measures and compares the impact 
generated by Neuronal Jamming cyberattacks (JAM) over bio- 
logical and artificial networks. In particular, this analysis aims 
to study if an alteration in neuronal behavior can also impact 
the mouse’s ability to solve the maze based on the evaluation 

of the CNN model. 
Table 3 presents the parameters used to perform the ex- 

periments, indicating between parentheses if a parameter is 
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Fig. 3 – Distribution of the number of spikes based on the consecutive number of positions attacked for JAM cyberattacks. 

common to both scenarios or specific to one of them. As can be 
seen, five number of simultaneously attacked neurons (named 

as nodes in the CNN) have been tested, probing several con- 
secutively attacked positions ranging from one to all the posi- 
tions of the optimal path of the maze. Additionally, each com- 
bination of parameters is executed ten times, where each ex- 
ecution targets a different set of randomly selected neurons. 
The meaning of these parameters will be presented through- 
out this section. 

5.1. JAM cyberattacks over the biological network 

Focusing on the biological perspective, attacked neurons are 
forced to the minimum voltage value of the model, which cor- 
responds to -65 mV, as indicated in Table 3 . Fig. 3 presents the 
experiment consisting in augmenting the number of consec- 
utive positions of the optimal path under attack, always ini- 
tiating the attack in the first position, and evaluating differ- 
ent numbers of simultaneously attacked neurons. The vari- 
ability shown corresponds to the ten executions performed 

per combination of parameters. In particular, this figure high- 
lights how augmenting the number of consecutive positions 
of the labyrinth under attack impacts in terms of the number 
of spikes metric. The upper sub-figure depicts that increas- 
ing the number of simultaneously attacked neurons consider- 
ably reduces the mean of spikes, reaching a difference of 5000 
spikes in the most damaging situation compared to sponta- 
neous behavior. The bottom sub-figure shows that the dis- 
tribution of the number of spikes presents small variability 
during the first six positions. More consecutive positions un- 
der attack generate a progressive reduction in the dispersion, 

particularly for higher numbers of attacked neurons, indicat- 
ing that JAM cyberattacks cause an enormous impact on the 
spike metric. Nevertheless, increasing the number of consec- 
utive positions over more than 20 generates a progressive re- 
duction in the distributions when attacking more than 75 neu- 
rons. This situation is explained by many neurons without ac- 
tivity during most of the simulation, decreasing their variabil- 
ity in the number of spikes. 

Moving to the temporal dispersion of spikes, Fig. 4 depicts 
that attacking a higher number of neurons reduces the tem- 
poral dispersion. It is relevant to highlight that targeting a re- 
duced number of neurons (up to 35) produces a slightly higher 
dispersion than the spontaneous behavior, where these peaks 
can be produced by the slight variations generated by the at- 
tack. Nevertheless, increasing the number of selected neu- 
rons gets a substantial reduction. In particular, attacking 105 
neurons achieves the most damaging configuration, causing 
a reduction from 36% of instants with spikes to an approxi- 
mate 28%. It is also important to note that, in the bottom sub- 
figure, the distribution of targeting 105 neurons significantly 
decreases compared to other numbers of attacked neurons, 
indicating the importance of this parameter of the attack. 

5.2. JAM cyberattacks over the artificial network 

In the artificial scenario, the attack consists in modifying the 
targeted nodes of the trained model, affecting their normal 
functioning. For that, the concept of output importance refers 
to the value used to alter the output of the nodes targeted by 
the attack, thus affecting their relevance in the network. In 

JAM, the value used to attack the nodes is -1, which indicates 
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Fig. 4 – Distribution of the temporal dispersion based on the consecutive number of positions attacked for JAM cyberattacks. 

Fig. 5 – Number of steps for different number of neurons between five and 105, with ten executions, for JAM cyberattacks. 

that those nodes do not have any relevance in the network, 
representing their inhibition. This forces the network to find 

alternative paths to solve the problem, deactivating the paths 
from the affected nodes to later layers. 

The first approach followed was to apply the attacked 

model for the targeted consecutive positions, restoring it to 
the non-altered model after the duration of the attack. Al- 
though the mouse performed erratic decisions across the 
maze during the attack, once the model without attacks was 
restored, the mouse could always find the exit position ulti- 
mately. To better measure the impact of this attack in terms of 
percentage of success and number of steps, we decided to con- 
tinuously perform the attack for all 27 positions of the maze. 
These experimentation results are represented in Fig. 5 , which 

indicates that simultaneously attacking more than 15 nodes 
does not generate any difference since the number of steps 

gets stabilized in around 100 steps. It is worthy to note that the 
success percentage is not studied as both variables are highly 
correlated, with a -0.99 Pearson correlation. 

Based on the decision to attack during the whole simula- 
tion (27 positions), and compare these results with the bio- 
logical simulation, we decided to focus the analysis of both 

scenarios on a number of attacked neurons between one and 

20. From the CNN point of view, this decision is motivated by 
Fig. 6 , which indicates that this particular range reflects vari- 
ations in the number of steps and that further increments in 

this variable do not offer new variability. 
After defining the range, the biological experiments were 

adapted to be comparable with those from the CNN scenario. 
For that, a number of attacked neurons between one and 20 
were selected, setting the attack to cover all 27 consecutive 
positions of the optimal path of the maze, starting in the in- 
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Fig. 6 – Number of steps for a range between one and 20 attacked neurons, with ten executions, for JAM cyberattacks. 

Fig. 7 – Number of spikes for a range of attacked neurons between one and 20 for JAM cyberattacks. 

Fig. 8 – Temporal dispersion for a range of attacked neurons between one and 20 for JAM cyberattacks. 

stant 50 ms. Figs. 7 and 8 present, respectively, the results for 
the number of spikes and the temporal dispersion. It is im- 
portant to highlight that these plots present the same trend 

as described in Fig. 3 and Fig. 4 , respectively, for the analysis 
between five and 105 attacked neurons. 

Finally, Table 4 compares the Pearson correlation between 

both scenarios, which determines a correlation between the 

number of steps and the number of spikes of -0.66, which in- 
dicates that these variables have a 66% linear correlation in 

an inversely proportional way. A similar situation happens be- 
tween the number of steps and the percentage of dispersion, 
with a -0.59 Pearson correlation. This indicates, in general, a 
low correlation between scenarios. However, this can be ex- 
plained due to the reduction in the number of attacked neu- 
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Table 4 – Correlation of relevant features between CNN 

and biological experiments for JAM cyber attacks. 

# spikes % dispersion # steps # neurons 

# spikes 1.00 0.98 -0.66 -0.99 
% dispersion 0.98 1.00 -0.59 -0.98 
# steps -0.66 -0.59 1.00 0.66 
# neurons -0.99 -0.98 0.66 1.00 

rons considered. As indicated before, the number of neurons 
has been limited to a range between one and 20. Although 

these values offer variability in the CNN, there is not much 

difference in the distribution between these close sizes in the 
biological simulation. 

Nevertheless, the individual analysis performed in this sec- 
tion for both biological and artificial scenarios presents the 
high impacts that JAM cyberattacks generate over these sce- 
narios. The Spearman correlation values have also been calcu- 
lated, studying the non-linearity of the data. Since the values 
obtained were similar to those presented for the Pearson cor- 
relation, we opted to include the latter for concision. 

Finally, it is interesting to present the performance of the 
attacked model in terms of ROC curves. First, it is essential to 
highlight that the model has four different outputs (up, down, 
left, right), corresponding to the direction to perform the next 
step within the maze. Based on that, the ROC curves present 
the relationship between erroneous and correct predictions 
when the model is not under attack and when different con- 
figurations of the attacks are applied. 

Focusing on JAM cyberattacks, and since they affect mul- 
tiple positions, it is not possible to know the number of steps 
correctly performed to obtain the True Positive Rate (TPR) and 

False Positive Rate (FPR). Based on that limitation, we could as- 
sume a TPR equal to zero and FPR of 1, according to the con- 
figuration of the attack. 

6. Comparison of JAM and FLO cyberattacks 

This section compares the impact caused by JAM cyberattacks 
with FLO, a neuronal cyberattack existing in the literature. For 
that, we first introduce FLO cyberattacks, moving to the anal- 
ysis of their impacts, and later we compare it with JAM. This 
section also provides an in-depth study of the results of in- 
dividually performing FLO cyberattacks in different positions 
of the optimal path, comparing the results of biological and 

artificial networks. 

6.1. Definition of Neuronal Flooding cyberattacks 

Neuronal Flooding cyberattacks (FLO) were defined in our pre- 
vious work ( Bernal et al., 2020 ) as a way to overstimulate tar- 
geted neurons. In that work, we just explored the cyberattacks 
for the first position of the maze, whose behavior is formally 
represented by Algorithm 2 . In particular, it indicates that the 
attack over the targeted neurons is performed in a particu- 
lar instant of time t attk , in contrast to JAM, which is executed 

within a determined temporal period. 

Algorithm 2 FLO cyberattack execution. 

t = 0 
while t < t win do 

if t == t at t k then 

for all n ∈ AN do 
v n ← v n + vi n 

end for 
end if
t ← t + �t 

end while 

Table 5 – Parameters used in the analysis for FLO cyber- 
attacks. 

Parameter Values 

Positions attacked (Bio, CNN) { 1 , 2 , ..., 27 } 
Number of neurons/nodes (Bio, CNN) { 5 , 35 , 55 , 75 , 105 } 
Voltage increment (Bio) 40 mV 

Output importance (CNN) 60 % 

Number of executions (Bio, CNN) 10 

In contrast, the current work performs FLO cyberattacks 
over each individual position of the optimal maze path, evalu- 
ating a different number of simultaneously attacked neurons 
and multiple increment voltages per position. The parame- 
ters used for this experiment are indicated in Table 5 , hav- 
ing five different values of simultaneously attacked neurons 
(or nodes) and a single value of voltage increment. The use of 
just one voltage value is based on the experiments performed 

in Bernal et al. (2020) , which concluded that, for FLO cyberat- 
tacks, the usage of different voltages did not have a substantial 
impact. Besides, each combination of parameters is executed 

ten times. 

6.2. FLO cyberattacks over the biological network 

In the biological scenario, we perform a FLO cyberattack indi- 
vidually over each position of the optimal path of the maze, 
at the instant 50ms after reaching a targeted position, evalu- 
ating the impact of the attack during the complete simulation 

(27 s, until the mouse reaches the exit) based on the number 
of spikes and temporal dispersion metrics. 

Fig. 9 presents the evolution of the number of spikes ac- 
cording to the individual position of the optimal path under 
attack. As previously indicated, the voltage used to increment 
the targeted neurons is 40 mV. 

It is worthy to note that, for each attacked position, the 
represented values correspond to the number of spikes over 
the complete simulation. The upper sub-figure presents the 
mean of spikes for each position under attack, where each 

line represents a different number of attacked neurons. The 
effect of FLO cyberattacks to reduce the temporal dispersion 

was already documented in Bernal et al. (2020) . In Fig. 9 , we 
can observe that performing the attack in later positions of the 
optimal path generates a lower impact since in the positions 
before the cyberattack the spikes are not altered and, thus, 
the spiking behavior is the same as the spontaneous behavior. 
Particularly, it can be observed that attacking 105 neurons in 
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Fig. 9 – Distribution of the number of spikes according to the position under attack for FLO cyberattacks. 

the first position generates an approximate reduction of 500 
spikes. These results also indicate that this attack causes a 
desynchronization of neuronal activity over time, presenting 
a higher variability when the attack is performed in the first 
positions. This variability is also benefited by the particular 
model used and the propagation of the spikes. 

Additionally, attacking a broader number of neurons pro- 
duces, in general, a higher reduction in the mean of spikes. 
Nevertheless, we can observe no significant differences be- 
tween attacking 75 and 105 simultaneous neurons in terms of 
the mean of spikes. Regardless of these similarities, there are 
variations in their maximum and minimum values, indicat- 
ing variations in their distributions. These data correspond to 
the mean of the distribution represented in the bottom sub- 
figure, where we can see a higher variability in the number 
of spikes when the attack is applied in the first positions. This 
figure also highlights that the maximum and minimum values 
of the distribution have a significant variability compared to 
the spontaneous behavior, stabilized when we attack in later 
positions. 

After analyzing the behavior of the FLO cyberattack in 

terms of the number of spikes, Fig. 10 presents its impact fo- 
cusing on the temporal dispersion metric. As can be seen, the 
dispersion is higher when attacking the first positions due to 
the same reasons addressed for the number of spikes metric. 
Additionally, attacking a broader number of neurons derives 
in a higher percentage of instants with spikes. Specifically, si- 
multaneously attacking 75 neurons reaches the highest im- 
pact, augmenting the initial 36% of instants with spikes to an 

approximate 40%. Finally, it is worthy to note that these two 

metrics are highly related, with a Pearson correlation value of 
-0.97. 

6.3. FLO cyberattacks over the artificial network 

In terms of attacks over the CNN, it is essential to note that 
the voltage increment used to attack the biological network 
has been proportionally adapted to the CNN scenario, corre- 
sponding to the output importance indicated in Table 5 . Based 

on that, the value of 40 mV used in the biological scenario rep- 
resents a 60% from the voltage range defined by the Izhikevich 

model used. This 60% is the equivalent value used to incre- 
ment the importance of the targeted nodes during the attack 
to the CNN. 

Fig. 11 presents the evolution of the mean number of steps 
among the ten executions per number of consecutively at- 
tacked nodes. This figure indicates the impact caused by at- 
tacking the mouse when it is placed in each individual po- 
sition of the optimal path of the maze. When the simulated 

mouse is placed in a particular position, we obtain the number 
of steps required to reach the exit from the position attacked. 
To this resulting number of steps, we add the number of steps 
correctly performed until the attacked position, which corre- 
sponds to correctly performed decisions before the attack. It 
is essential to note that, once the model is attacked, it is used 

until the end of that particular execution. 
In this figure, each color indicates a different number of si- 

multaneous neurons attacked. It can be appreciated that the 
number of steps remains constant in the spontaneous behav- 
ior of the CNN, requiring 26 steps to find the exit. These 26 
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Fig. 10 – Percentage of instants with spikes according to the position under attack for FLO cyberattacks. 

Fig. 11 – Mean of steps when we perform a FLO cyberattack in each position of the optimal path of the maze, considering 
five different number of simultaneously attacked neurons. 

steps are determined by the model resulting from training the 
CNN, which concluded an optimal path of 27 positions to exit 
the exit and, thus, 26 steps between them. There is an excep- 
tion in position 27, where the mouse needs to move to an 

adjacent cell in the maze to finally reach the exit since the 
mouse initially started in the exit position. This figure high- 
lights that augmenting the number of attacked neurons in- 
creases the number of steps until position 21. From that posi- 
tion, the trend decreases since the closer the mouse is to the 
exit, the easier it is to solve the maze by probability, even if the 
mouse suffers an alteration in its decision ability. 

Another relevant metric to study this situation is the per- 
centage of times in which the mouse finds the exit. The Pear- 
son correlation has been calculated between the number of 

steps and the success rate, obtaining a value of -0.99, mean- 
ing that they present a trend almost identical in an inversely 
proportional way. That is to say, we have observed that the 
number of steps increases when the percentage of success de- 
creases. Based on that, the number of steps will be the sole 
metric used to evaluate the CNN in this analysis. 

It is interesting to consider the relationship between the re- 
sults obtained from attacking the biological and artificial sce- 
narios to help understand the behavior in the biological net- 
work. To perform this comparison, Table 6 presents the Pear- 
son correlation between the relevant features considered in 

these domains. In particular, we are interested in the relation- 
ship between the number of steps and the number of spikes, 
and between the number of steps and the percentage of dis- 
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Table 6 – Correlation of relevant features between CNN and biological experiments for FLO cyberattacks. 

position of attack # spikes % dispersion # steps # neurons 

position attack 1.00 0.53 -0.53 -0.42 -0.0 
# spikes 0.53 1.00 -0.97 -0.82 -0.66 
% dispersion -0.53 -0.97 1.00 0.81 0.56 
# steps -0.42 -0.82 0.81 1.00 0.65 
# neurons -0.0 -0.66 0.56 0.65 1.00 

persion. Based on that, it can be determined that the CNN and 

biological approaches have a high correlation, with an approx- 
imate 80% correlation in both of them. 

Based on the above, we can conclude a significant relation- 
ship between the results obtained in both experimental di- 
mensions. These results suggest that performing attacks over 
the brain of the mouse could not only alter its spontaneous 
neuronal behavior but also affect its decisions to solve the 
maze, increasing the number of steps to find the exit and de- 
creasing its chances to exit the maze. Nevertheless, these re- 
sults are limited to our use case, the neuronal topology, and 

the use of a CNN to model a portion of the mouse’s visual cor- 
tex. 

Once presented the relationship between the biological 
and artificial scenarios, this section compares the results of 
both attacks. Since the approaches followed between these at- 
tacks are not directly comparable, where FLO focuses on indi- 
vidually attacking different positions and JAM affects multi- 
ple consecutive positions, this study focuses on analyzing the 
correlations obtained for each attack. In FLO, the Pearson cor- 
relation obtained was -0.82 for the relationship between the 
number of steps and number of spikes and 0.81 between steps 
and temporal dispersion. On the contrary, a value of -0.66 was 
obtained between the steps and the spikes and -0.59 for the 
relationship between steps and dispersion for JAM. These val- 
ues indicate that the relationship between the biological and 

artificial networks is closer in the FLO situation, despite the 
analysis for the JAM cyberattack presented some limitations 
as stated in Section 5 . 

Finally, and as previously presented for JAM cyberattacks, 
we offer the performance of the attacked model based on ROC 

curves. In particular, for FLO cyberattacks, we have obtained 

two ROC curves. The first curve presents the TPR and FPR for 
aggregation of positions 24 to 27. We have included this range 
since in these positions, the mouse is able, on average, to al- 
ways exit the maze (see Fig. 11 ). This ROC curve, subsequently 
presented in Fig. 12 , indicates that since the mouse can always 
find the exit of the maze, the TPR will always be 1. Moreover, 
the FPR ranges from close to zero (perfect value) when attack- 
ing five simultaneous nodes to more than 0.8 when attacking 
105. The FPR is determined based on the number of decisions 
incorrectly taken compared to the decisions performed by the 
spontaneous behavior. 

The second ROC curve obtained for FLO presents an aggre- 
gation between positions one to 23 since we can observe in 

Fig. 11 that performing attacks in those positions is more dam- 
aging, and thus, the mouse is not always able, on average, to 
exit the maze. Because of that, the TPR decreases, where at- 
tacking five neurons presents the best TPR. From its part, the 

FPR is considerably high for a number of simultaneously at- 
tacked neurons higher than five, as presented in Fig. 13 . 

7. Neural cyberattacks and neurodegenerative 

diseases 

This section discusses the results obtained in this work, aim- 
ing to understand the impact of these attacks better, their 
possible consequences in the real world, and defend against 
them. Additionally, if we could reproduce the effect of neu- 
rodegenerative diseases with these attacks, we could gener- 
ate databases containing multiple attack configurations, study 
their impact, and propose mechanisms to reduce these im- 
pacts. 

Previous sections have highlighted the enormous impact 
that neuronal cyberattacks can cause over spontaneous neu- 
ral activity, affecting the amount, periodicity, and even the 
presence of spikes. Additionally, we have observed that these 
cyberattacks could also alter the simulated mouse’s deci- 
sion ability, forcing it to make mistakes in the resolution of 
the labyrinth. Furthermore, these cyberattacks possess differ- 
ences based on their action mechanisms. JAM cyberattacks fo- 
cus on continuously inhibiting the neuronal activity of the tar- 
geted neurons, suppressing this signaling along with the du- 
ration of the attack. On the contrary, FLO cyberattacks aim to 
overstimulate a set of neurons in a particular instant, extend- 
ing its impact after its application. 

Based on these action mechanisms, we identify that the 
behavior of the previous attacks has similarities with the ef- 
fects and consequences that certain neurodegenerative dis- 
eases generate. As indicated in Section 2 , neurodegenerative 
diseases can be included within the concept of brain connec- 
tivity disorders. In particular, for Alzheimer’s Disease (AD), the 
deactivation of the Default Mode Network (DMN) could be re- 
produced by an attacker able to target individual neurons, re- 
producing or accelerating the effects of the disease. We iden- 
tify that JAM, focused on neuronal activity inhibition, could be 
used for these purposes. On the contrary, Amyotrophic lateral 
sclerosis (ALS) is based on neuronal activity hyperexcitability, 
where FLO could be applied to periodically stimulate the tar- 
geted neurons and thus produce a perturbation in the excita- 
tory/inhibitory balance of cortical neurons. 

Although neuronal cyberattacks are promising mecha- 
nisms aiming to extend our knowledge about cybersecurity 
on BCI, further research is required to study the impact these 
cyberattacks can cause over neural circuits and cognitive 
and behavioral functions. The study of neuronal cyberattacks 
could help identify particular characteristics helping to detect 
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Fig. 12 – ROC curve for an aggregation of positions 24 to 27 of the optimal path of the maze. 

Fig. 13 – ROC curve for an aggregation of positions one to 23 of the optimal path of the maze. 

prospect threats on BCI systems. Additionally, the application 

of neuronal cyberattacks could be beneficial in neurological 
research, using these cyberattacks to control the spread of the 
disease in neural models or even in vivo trials. 

8. Conclusion 

This work introduces the Neuronal Jamming cyberattack 
(JAM), consisting in the inhibition of neuronal activity. To im- 
plement this attack, and due to a lack of realistic neuronal 
topologies, a Convolutional Neural Network (CNN) has been 

trained to generate a neuronal topology based on a use case 
of a mouse trying to exit a maze. Once having both topologies, 
we analyze the impact that JAM cyberattacks present over bi- 
ological and artificial scenarios. Additionally, this manuscript 
offers a comparison between JAM and FLO cyberattacks. For 
that, we have implemented several configurations of FLO, a 
cyberattack already existing in the literature aiming to over- 
stimulate neural activity. To measure their impact, we have 
studied multiple metrics in the biological scenario (number of 
spikes and temporal dispersion) and in the CNN (number of 
steps and success rate in solving the problem). 

The obtained results highlight that, in JAM cyberattacks, 
increasing the number of consecutive positions under attack 
reduces the spikes and temporal dispersion. In the artificial 
network, attacking up to 20 nodes is enough to prevent the 
mouse from completing the labyrinth. Moreover, a contribu- 
tion of this work is the comparison between scenarios based 

on the study of linear correlation between variables. This anal- 
ysis indicates that this attack could affect the mouse’s ability 
to escape the maze. We have obtained a Pearson’s correlation 

of 0.6, a low value explained due to the restriction of the num- 
ber of neurons used to compute the correlations. 

Additionally, we have observed for FLO experiments that 
delaying the instant of attack to later positions reduces the 
impact from both biological metrics. Moreover, delaying the 
attack until position 21 generates an increase in the num- 
ber of steps. From this position, delaying the instant of attack 
decreases the number of steps since it is more probable to 
find the exit by probability. Pearson’s correlation between vari- 
ables for this cyberattack was approximately 0.8, highlighting 
a closer relationship between scenarios. Finally, we have dis- 
cussed the similarities between neurodegenerative diseases 
and the neuronal cyberattacks studied. 

In future work, we plan to investigate new neuronal cyber- 
attacks with different action mechanisms and impacts. Ad- 
ditionally, since the main limitation of this work is the use 
of a neuronal topology extracted from a CNN, we aim to ex- 
plore the possibility of having realistic topologies, which are 
currently very limited, to simulate existing and prospecting 
cyberattacks. Finally, as the present work only focuses on 

the characterization of these cyberattacks, we want to focus 
our efforts on designing and implementing detection mecha- 
nisms to identify the initiation of a neuronal cyberattack and 

propose mitigation techniques to reduce their impact or even 

neutralize it. 
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1 INTRODUCTION
Brain-Computer Interfaces (BCIs) are bidirectional systems that
interact with the brain, allowing the acquisition of neural data
and neuronal stimulation. BCIs can be classified according to their
invasiveness level, being invasive interfaces extensively used in
medical therapy. In this sense and as an example, invasive BCIs
focused on neural recording have been used to control prosthetic
limbs in impaired patients, while BCIs for neuromodulation have
been helpful for treating neurodegenerative conditions, such as
Parkinson’s disease [9]. The second main family of BCIs, in terms
of invasiveness, is the non-invasive one. BCIs based on non-invasive
principles and, mainly, those focused on neural data acquisition
such as electroencephalography (EEG), have gained popularity in
recent years, extending their usage from traditional medical scenar-
ios to new domains such as entertainment or video games. However,
despite the benefits of non-invasive BCIs, some works in the litera-
ture have identified particular cybersecurity issues from a neural
data acquisition perspective. In particular, Martinovic et al. [19]
demonstrated that an attacker could obtain sensitive personal data
from BCI users, taking advantage of their cerebral response (P300
potentials) generated when known visual stimuli are presented to
them. Bonaci et al. [1] also described a scenario where attackers
could maliciously add or modify software modules defining the BCI
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Accepted in Communications of the ACM, May, 2022
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3535509

to perform dangerous actions over the users. Finally, Takabi et al.
[24] highlighted that most APIs used to develop BCI applications
offered complete access over the information acquired by the BCI,
presenting confidentiality problems.

Cybersecurity of invasive BCIs is also a challenge that has been
identified in the literature and whose application is in initial stages
[3, 4, 8]. This situation is complicated by the recent introduction of
novel BCI designs based on nanotechnology aiming to surpass the
limitations of traditional BCIs. One example of these emergent sys-
tems is Neuralink [20], which uses nanotechnology to record and
stimulate particular brain regions with single-neuron resolution.
Despite the advantages of the new generation of invasive BCIs, the
literature has already identified that some of these BCIs present
vulnerabilities that attackers could exploit to affect neural activity
[17]. In particular, the literature has proposed two cyberattacks
focused on neural stimulation named Neural Flooding and Neural
Scanning [17], as well as a cyberattack focused on neural inhibition
[18]. These threats have been defined within the term neural cyber-
attacks, consisting in well-known attacks from computer science,
able to disrupt the spontaneous activity of neural networks of the
brain, stimulating or inhibiting neurons.

In such a disruptive and novel context, one of the main chal-
lenges is formally defining the behavior of different neural cyberat-
tacks affecting the brain. In this direction, studies addressing how
neural cyberattacks could recreate the effects induced by certain
neurodegenerative diseases are absent in current literature. Fur-
thermore, the analysis of these cyberattacks regarding their impact
on spontaneous neural activity is unexplored. Finally, a comparison
of the impact caused by distinct neural cyberattacks is required to
understand the changes caused over the brain.

With the goal of improving the previous open challenges, this
article presents eight neural cyberattacks affecting spontaneous
neural activity, inspired by well-known cyberattacks from the com-
puter science domain: Neural Flooding, Neural Jamming, Neural
Scanning, Neural Selective Forwarding, Neural Spoofing, Neural
Sybil, Neural Sinkhole and Neural Nonce. After presenting their
formal definitions, the cyberattacks have been implemented over
a simulated biological neural network representing a portion of a
mouse’s visual cortex, whose topology has been obtained from train-
ing a Convolutional Neural Network (CNN). This implementation
is based on a lack of realistic neuronal topologies in the literature
[7] and existing works indicating the similarities CNNs have with
neuronal structures from the visual cortex [11, 13–15]. Finally, a
comparison of the impact between each neural cyberattack is pre-
sented for the initial and final part of a neural simulation, studying
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their impact for both the short and long term. In conclusion, Neural
Nonce and Neural Jamming are the most suitable cyberattacks for
short-term effects, while Neural Scanning and Neural Nonce are
the most adequate for long-term effects.

2 THE BRAIN AT RISK DUE TO NOVEL
GENERATIONS OF BCI

Although this work focuses on neuronal cyberattacks from a com-
puter science point of view, it is essential to introduce, in a basic
and synthesized way, how the brain works to understand their
behavior and the current state of neuromodulation technologies
able to stimulate and/or inhibit neurons.

The brain is the most complex organ in the human body, manag-
ing all major activities of the organism. Its structure is divided into
two hemispheres, left and right, controlling the opposite side of the
body. Moreover, the cortex of each hemisphere presents four lobes
on its surface with differentiated responsibilities. Frontal lobes in-
tervene in reasoning, planning, translating thoughts into words,
and defining personality. In contrast, parietal lobes manage sen-
sory perceptions such as taste or touch, additionally to temperature
and pain. These lobes also intervene in memory and the under-
standing of languages. Occipital lobes are in charge of decoding
visual information, such as colors or forms, and identify objects,
while temporal lobes focus on processing auditory stimuli, also
intervening in verbal memory [12].

Within the hemispheres, around 86 billion neurons interact with
each other to perform these complex tasks. This interaction is per-
formed by two specific structures of the neuron, the dendrites and
the axon. While dendrites receive information from other neu-
rons, axons transmit instructions to neurons. The connection es-
tablished between these structures is known as a synapse, and it is
the base of neuronal communication. In neuronal communication,
the dendrites of a given neuron receive stimuli from many neurons
(presynaptic neurons) via neurotransmitters, which are molecules
that force actions in the receiver neuron (postsynaptic neuron).
Presynaptic neurons can be excitatory, producing particular neu-
rotransmitters aiming to initiate an impulse on the postsynaptic
neuron or inhibitory, liberating neurotransmitters to prevent its
activity. If the sum of these positive and negative impulses exceeds
the excitation threshold of the postsynaptic neuron, this neuron
will generate a nerve impulse known as action potential (or spike),
electrically transmitted along the axon to reach the axon terminals.
When the electric stimulus reaches these terminals, they liberate
particular neurotransmitters to the synaptic cleft, the space sep-
arating the axon from the dendrites of other neurons, aiming to
influence their activity in an excitatory or inhibitory way. These
electric and chemical processes are repeated neuron after neuron,
only if they exceed their excitation threshold.

Neurotechnology plays an essential role in supporting these neu-
ronal communications, used for decades in clinical scenarios to
induce or suppress neural activity. There is a wide variety of tech-
nologies, both invasive and non-invasive, with different modulation
principles such as ultrasounds, electrical currents, magnetic fields,
or light pulses (optogenetics) [6]. Despite the differences of these
approaches, most of them share common parameters used to adjust
the modulation process, such as the amplitude or voltage applied

or the duration and periodicity of the pulses. Focusing on invasive
BCIs, Deep Brain Stimulation (DBS) represents an excellent exam-
ple of these technologies used to treat conditions like Parkinson’s
disease or obsessive-compulsive disorder using neural stimulation
[9]. Moreover, most invasive BCIs also offer recording capabilities,
enabling the monitoring of the brain to determine the best instant
to stimulate or inhibit a particular set of neurons.

In such a scenario, novel solutions such as Neuralink [20] or
WiOptND [26] deserve special interest since they have introduced
the use of nanotechnology to miniaturize the electrodes implanted
in the brain, achieving single-neuron resolution. Particularly, these
technologies address neuromodulation from two different perspec-
tives. Neuralink uses electrical currents to stimulate the brain, while
WiOptND stimulates or inhibits neuronal activity using optogenet-
ics. Nevertheless, these current initiatives present vulnerabilities
in their architectures that attackers could exploit to stimulate or
inhibit neurons maliciously [17]. In this direction, Figure 1 intro-
duces the anatomical structure of the head from the scalp to the
cerebral cortex, presenting an invasive neuromodulation BCI placed
in the cortex that an attacker externally targets. As can be seen, the
attacker can execute one of the eight cyberattacks proposed in this
work (more details are provided in Section 3). These cyberattacks
exploit vulnerabilities existing in current BCIs (see [16]), generating
an impact over the BCI, thus stimulating or inhibiting neuronal
activity.
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Figure 1: Attacker executing the proposed neuronal cyberat-
tacks that exploit vulnerabilities of invasive neuromodula-
tion BCIs and generate particular impacts on the BCI.

Taxonomy of Neural Cyberattacks

84 PhD Thesis – Sergio López Bernal



Eight Reasons Why Cybersecurity on Novel Generations of Brain-Computer Interfaces Must Be Prioritized Accepted in Communications of the ACM, May, 2022

3 EIGHT NEURAL CYBERATTACKS
AFFECTING BRAIN BEHAVIOR

Once the vulnerabilities of novel BCIs have been highlighted, it is
time to introduce neural cyberattacks exploiting them and affecting
neural behavior. In this direction, this work presents eight cyberat-
tacks inspired by well-known threats from digital communications,
justified by the potential exploitation of previously highlighted vul-
nerabilities. Particularly, five of these cyberattacks are new (Neural
Selective Forwarding, Neural Spoofing, Neural Sybil, Neural Sink-
hole and Neural Nonce, while the remaining three were presented
in previous work (Neural Flooding and Neural Scanning in [17], and
Neural Jamming in [18]). All these cyberattacks are either based
on the stimulation of neurons, their inhibition, or a combination
of both. Particularly, and for the sake of simplicity, these cyberat-
tacks assume the usage of technologies able to stimulate or inhibit
neuronal behavior.

3.1 Neuronal Flooding
In cybersecurity, flooding cyberattacks focus on collapsing a net-
work by transmitting a high number of data packets, generally
directed to particular targets within the network [22]. As a conse-
quence, these endpoints increase their workload, not being able
to manage legit communications adequately. Moving to a neuro-
logical perspective, Neuronal Flooding (FLO) cyberattacks aim to
overstimulate multiple neurons in a particular time instant. This
cyberattack does not need previous knowledge about the status of
the target neurons, presenting a low complexity compared to other
neural cyberattacks.

The general behavior of the FLO cyberattack implemented can be
consulted in Figure 2, where green boxes indicate actions performed
by the cyberattack, and yellow diamonds are conditional blocks.
First, the attacker determines the attacking instant and the list
of targeted neurons. During the desired instant, the cyberattack
selects each of the neurons and stimulates it. Although the flow
chart presented could be interpreted as sequentially affecting these
neurons, the attack is performed in a particular instant of time,
resulting in attacking the neurons at the same time.
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Evaluate
next instant

Select first neuron

Stimulate neuron

More neurons
to attack?

Select next
neuron

YES

NO

- Select the list of targeted neurons
- Define the instant of the attack

- Define the voltage for the attack

END

Current instant
under attack?

NO

YES

YES

NO

Figure 2: Implemented behavior of Neuronal Flooding.

3.2 Neuronal Jamming
Jamming cyberattacks focus on disrupting legitimate communica-
tions by introducing a malicious interference to the medium and
preventing the devices from communicating, thus deriving in a
denial of service (DoS) [25]. This principle can be translated to the
neurological world, where Neuronal Jamming (JAM) consists in
the inhibition of the activity of a set of neurons, impeding them
from generating or transmitting impulses to adjacent neurons. In
contrast to FLO, this cyberattack is performed during a determined
temporal window, in which the affected neurons do not generate
activity. This cyberattack also presents a low execution complexity,
only requiring the selection of the target neurons and the attack
duration.

The flow chart depicted in Figure 3 represents a temporal win-
dow in which the JAM cyberattack is performed. For each instant
between the beginning and the end of the attack, the list of targeted
neurons is simultaneously inhibited. This inhibition consists in set-
ting the neurons to their lowest voltage within their natural range
of values.
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More neurons
to attack?
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JAM attack
completed?

NO

YES
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Figure 3: Implemented behavior of Neuronal Jamming.

3.3 Neuronal Scanning
Port scanning is a common cybersecurity technique used to verify if
the communication ports of a machine are being used and identify
vulnerable services available in those ports [22]. For that, all ports of
the machine are sequentially tested. Similarly, Neuronal Scanning
(SCA) cyberattacks aim to sequentially stimulate all neurons of a
neuronal population, affecting only one neuron per time instant.
As in the previous cyberattacks, SCA does not require previous
knowledge about the status of the targeted neurons. Nevertheless, it
presents a moderate execution complexity since the attacker needs
to coordinate the order of the neurons attacked, avoid repetitions
between them, and determine the time interval between attacking
each neuron.

The SCA cyberattack implemented (see Figure 4) targets one
neuron per instant under attack, removing from the list those neu-
rons already attacked to avoid repetitions and ensure a sequential
selection. These instants are determined based on the start of the at-
tack and the time that the attacker waits between affecting neurons.

Journal Article 4

PhD Thesis – Sergio López Bernal 85



Accepted in Communications of the ACM, May, 2022 López Bernal, et al.

BEGIN

END

Any neurons
in list?

Evaluate
next instant

- Select first neuron          
- Stimulate neuron            
- Remove neuron from list

- Select the list of targeted neurons
- Define the start of the attack
- Define the duration between

attacking neurons
- Define the voltage for the attack

SCA attack
completed?

NO

YES

Current instant
under attack?

NO

NO

YES

YES

Figure 4: Implemented behavior of Neuronal Scanning.

3.4 Neuronal Selective Forwarding
Selective forwarding is one of the most harmful cyberattacks against
communication networks. In this kind of threat, malicious hosts
selectively drop some packets instead of forwarding them [2]. The
selection of dropping nodes may be random or predefined depend-
ing on the attack design. In the brain context, Neuronal Selective
Forwarding (FOR) consists in changing the propagation behavior
of a set of neurons during a temporal window, inhibiting particular
neurons at each instant of the window. This attack is more elaborate
than the previous ones because it requires knowledge of the neu-
rons involved in a given neuronal propagation path and their status
in each instant. It is achieved by real-time neuronal monitoring or
previously knowing the neuronal propagation behavior due to the
repetition of actions such as eye blinks or limb movements.

This cyberattack allows a wide variety of different configurations
for targeting neurons. It has been followed the same sequential
criteria already presented for SCA in this work, inhibiting them
instead of performing neural stimulation. Attending to Figure 5,
FOR introduces an additional conditional block that verifies if the
current voltage of the neuron is suitable for inhibition. Based on
the voltage defined for the attack, the implementation verifies if the
subtraction between the current voltage and the attacking voltage
is lower than the lowest possible value. If so, the attack sets the
voltage to the lowest threshold to avoid unrealistic results.

3.5 Neuronal Spoofing
In computer networks, a spoofing cyberattack occurs when a mali-
cious party impersonates a computer or subject to steal sensitive
data or launch attacks against other network hosts [22]. In the
brain scenario, Neuronal Spoofing (SPO) cyberattacks consist in
replicating the behavior of a set of neurons during a given period.
After recording the neuronal activity, the attacker uses this pattern
to stimulate or inhibit the same or different neurons at a different
time. This attack is one of the most sophisticated since it requires
recording, stimulation and inhibition capabilities, and deep knowl-
edge of brain functioning. Like most of them, the impact of this
cyberattack is high because a malicious attacker could control some
vital functions of the subject’s body.

The diagram presented in Figure 6 highlights two main processes.
First, the attack performs a neuronal recording procedure for the se-
lected neurons during a particular temporal period. For each instant
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Figure 5: Implemented behavior of Neuronal Selective For-
warding.

within the period, the attacker stores the voltage of each recorded
neuron. After that, the second process properly stimulates or in-
hibits a different neuronal population targeted by the attack, forcing
them to have the same behavior that those previously recorded.
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Figure 6: Implemented behavior of Neuronal Spoofing.

3.6 Neuronal Sybil
Sybil cyberattacks happen when a computer is hijacked to claim
multiple identities, presenting broad security and safety implica-
tions. Having different identities, the behavior of the infected host
differs according to the identity acting in each moment [5]. Bring-
ing these cyberattacks to the brain scenario implies that an attacker
could alter the operation of one or more neurons doing precisely
the opposite as their natural behavior. It means that when a given
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neuron is firing, the attacker inhibits the activity, and when it is not
firing, the attacker fires it. Neuronal Sybil (SYB) cyberattacks are
the most complex of the presented because they require real-time
recording (or previous knowledge of the firing pattern) and the
functionality of either stimulating or inhibiting a particular neuron
in a given instant depending on its natural behavior. The impact
of these neural cyberattacks is high, depending on the number of
affected neurons.

The implementation of SYB cyberattacks is similar to the one
presented for FLO, although the action performed over the neurons
is different (see Figure 7). In SYB, the voltage of each targeted
neuron is set to the opposite value within its natural range. This is
obtained by adding the higher and lower voltage thresholds of the
neuron and subtracting the current voltage value.
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Figure 7: Implemented behavior of Neuronal Sybil.

3.7 Neuronal Sinkhole
Sinkhole cyberattacks are applied to routing protocols, where a
node of the network broadcasts that itself is the best path to reach
particular destinations. Based on that, the surrounding nodes will
transmit their traffic to the malicious node, which could access,
modify or discard the received data [21]. From a neurological per-
spective, Neuronal Sinkhole (SIN) cyberattacks focus on stimulat-
ing neurons from superficial layers connected to neurons placed in
deeper layers, being the later the main target of the attack. In this re-
gard, SIN cyberattacks present a high complexity since the attacker
requires knowledge about the neuronal topology and synapses of a
specific area of the brain. Moreover, this cyberattack is performed
in a particular instant, stimulating the trigger set of neurons that
initiates the attack.

The actions included in the implementation of SIN cyberattacks
are the same as the presented for FLO, as shown in Figure 8. The
main difference between them lies in the selection of the targeted
neurons. SIN cyberattacks directly affect the neurons from early
layers connected via synapses with the target neuron located in
deep layers. Once identified the neurons to attack, the process of
stimulation is the same as FLO.
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Figure 8: Implemented behavior of Neuronal Sinkhole.

3.8 Neuronal Nonce
Nonce numbers are typically random values utilized in cryptogra-
phy to secure communications. A nonce is commonly used just once
to prevent that old communications are reused and thus perform a
replay attack [22]. In the context of neural cyberattacks, Neuronal
Nonce (NON) consists in attacking a random set of neurons in a
particular instant of time. The action performed could vary based
on the interests of the attacker, either producing neural stimulation,
neural inhibition, or a combination of both. The next execution
of the attack will target a completely different set. Based on this
variability, the complexity of the cyberattack is low, just requiring
physical access to the target neurons.

This cyberattack has been implemented following the same prin-
ciples already presented. The main difference (see Figure 9) resides
in the selection of the action to apply over each targeted neuron.
For each instant under attack and each targeted neuron, the attack
randomly determines to stimulate, inhibit or keep its spontaneous
behavior. The attacker can also indicate the probability assigned to
each action aiming to benefit particular actions.

Once presented the behavior of each neural cyberattack, Table 1
introduces a comparison between them. In particular, the theoretical
impact of each attack depends on the aggressiveness of its action
mechanism and the knowledge that the attacker has about the target
neurons. Nevertheless, these cyberattacks present particular aspects
that complicate their comparison, such as their inner behavior, the
instants and duration of the cyberattacks, the number of affected
neurons, or the voltages used to stimulate those neurons.

4 WHAT IS THE IMPACT OF NEURAL
CYBERATTACKS?

To answer this question it is important to mention that biological
neural topologies, known as connectomes, are critical to measure
the impact caused by cyberattacks. However, there is an absence of
realistic neuronal topologies in the literature, being an open chal-
lenge of the area [7]. In this context, and to alleviate this limitation,
the literature has evidenced that the hierarchy and functioning of
neurons in charge of the vision present similarities with the func-
tioning of CNNs [14] [11, 13, 15]. Particularly, the layers in both
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Figure 9: Implemented behavior of Neuronal Nonce.

Table 1: Comparison of proposed neural cyberattacks

Cyberattack Impact Neurons involved
per instant Duration Complexity

Neuronal Flooding Stimulation 1 - many One instant Low
Neuronal Jamming Inhibition 1 - many Time window Low
Neuronal Scanning Stimulation 1 Time window Moderate
Neuronal Selective

Forwarding
Recording
Inhibition 1 - many Time window Moderate

Neuronal Spoofing
Recording

Stimulation
Inhibition

1 - many Time window High

Neuronal Sybil
Recording

Stimulation
Inhibition

1 - many One instant High

Neuronal Sinkhole Stimulation 1 - many One instant Low

Neuronal Nonce
Recording

Stimulation
Inhibition

1 - many One instant Low

networks move from simple to abstract, where convolutional layers
are related to early visual regions and dense layers present similari-
ties with later visual areas. Furthermore, as stated by [15], CNNs
could be good candidates for approximation models of the visual
system. Based on that, this work employs a simulated biological
network, whose topology is artificially generated from training a
CNN, where the resulting CNN weights are transformed to biologi-
cal synaptic weights, used to represent the voltage increase induced
during an action potential. In summary, the CNN is just used to
generate a biological topology, while the biological connectome is
used to evaluate the impact of neural cyberattacks, representing the
effect of attacks over a neurostimulation BCI placed in the brain.

Considering the similarities between CNNs and biological ap-
proaches, previous work trained a CNN to solve the problem of a
mouse trying to exit a determined maze, modeling a portion of a
mouse’s visual cortex [17, 18]. This paper also uses this network to
generate a simple biological connectome to test the proposed eight
attacks. Particularly, this CNN was trained to obtain the optimal
path on the maze to find the exit, resulting in 27 positions, whose

topology comprises two convolutional layers of 200 and 72 nodes,
respectively, and a final dense layer of four nodes. Although this
simulated topology is not equivalent to a biological one, it serves
to compare the impact that each neural cyberattack has over a
common baseline.

Once having the artificial neural topology, it was ported to the
Brian2 neuronal simulator [23], modeling the biological behavior of
pyramidal neurons from three different layers of the visual cortex
of the mouse (L2/3, L5, and L6). For that, Izhikevich’s neuronal
model [10] was used to represent excitatory neurons with regular
spiking dynamics, defining neurons with a voltage range between
-65 mV and 30 mV. Finally, a simulation of 27 seconds was defined,
simulating a mouse staying one second in each position of the
optimal path of the maze previously mentioned. Supplementary
information concerning design and implementation aspects can be
found in [17].

Table 2 summarizes the parameters used during the experimen-
tation for each neural cyberattack. It is relevant to note that FLO,
JAM, SPO, and SYB target random neurons from the first layer,
while SCA and FOR sequentially attack all 200 neurons. SIN affects
only the neurons related to the target neurons, and NON randomly
evaluates the decision over each neuron of the first layer. Finally,
NON presents a probability of 20% of stimulating a neuron, a 20%
of inhibiting it, and a remaining 60% of keeping its spontaneous
behavior until the next instant under attack.

Table 2: Parameters used for each neural cyberattack, where
up arrows (↑) indicate a voltage increase, and down arrows
(↓) a voltage decrease.

Cyberattack Attacked
neurons Voltage Attack

start
Attack

duration
FLO 100 ↑ 40 mV 50 ms Instantaneous (1 ms)
JAM 100 -65 mV 10 ms 50 ms
SCA 200 ↑ 40 mV 10 ms Whole simulation
FOR 200 ↓ 40 mV 10 ms Whole simulation
SPO 100 Recorded voltages 10 ms 50 ms
SYB 100 Opposite in range 10 ms Instantaneous (1 ms)
SIN Up to 200 ↑ 40 mV 10 ms Instantaneous (1 ms)

NON Up to 200 ↑ 40 mV, ↓ 40 mV, or 0 mV 10 ms Whole simulation

To better understand the behavior of these cyberattacks and the
parameters indicated, Figure 10 depicts a raster plot per cyberattack
with the evolution of neuronal spikes simulating the biological
connectome during a simplified simulation of 215 ms instead of 27
seconds, aiming to improve its visibility. A simulation of 215 ms
has been chosen since it is the minimum duration to clearly present
SCA and FOR cyberattacks, attacking one neuron per millisecond.
Particularly, this figure allows the visual comparison between each
cyberattack and the spontaneous behavior. Besides, it is worth
noting that this figure does not intend to exhaustively present the
impact and evolution of the cyberattacks on neural activity but
just illustrate their action mechanisms in a simplified way. Those
considerations are later presented in this section.

As can be seen in Figure 10, the first raster plot, representing
the spontaneous behavior, presents vertical columns of green dots
corresponding to regular spiking from Izhikevich’s model. This
spontaneous behavior is also included in the plots presenting each
cyberattack to compare their behavior easily. Blue dots indicate
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Figure 10: Visual representation of the behavior of each neural cyberattack proposed. Green dots represent neuronal spikes
from the spontaneous behavior, blue dots indicate stimulated neurons, black dots inhibited ones, and orange dots highlight
the spikes produced as a consequence of the attack. A grey background indicates the duration of the attack.

neurons attacked by neural stimulation, while black dots represent
inhibitory actions. Furthermore, orange dots highlight the evolu-
tion of each cyberattack. Finally, a grey background indicates the
duration of the cyberattack.

Compared to the spontaneous behavior, FLO generates new or-
ange groups of spikes before the spontaneous columns, caused by
the stimulation performed at 10 ms. Additionally, orange spikes can
be appreciated within the green columns in layers two and three
(neurons 200 to 276). These spikes are also a consequence of the
attack, applying to subsequent cyberattacks. On the contrary, JAM
performs neural inhibition until the instant 60 ms, and it is after
that instant when the subset of attacked neurons performs spikes
(indicated in black), inducing a delay compared to the spontaneous
behavior that is repeated over time as a second column of orange
spikes.

Regarding SCA and FOR, both cyberattacks are active during al-
most all the simulation. However, their impact is quite different. In
SCA, a diagonal succession of stimulated neurons can be observed,
producing an incremental impact propagated along time. This im-
pact can be appreciated by the apparition of additional diagonal
groups of spikes under the diagonal and the anticipation of spikes
in the second and third layers. In contrast, FOR only presents small
perturbations compared to the spontaneous behavior induced by

the implementation considerations already presented in Figure 5.
Furthermore, SPO also performs its activity during a temporal win-
dow. In this case, there is a clear difference between the behavior
of neurons with indexes 100 to 200 compared to the spontaneous
behavior caused by the repetition of spikes previously recorded
between instants 10 to 60 ms.

Moving to another stimulation cyberattack, SYB presents a sim-
ilar spikes trend to FLO. This is explained by the voltage range
defined by Izhikevich’s model, between -65 mV to 30 mV, which
introduces a higher probability of stimulating than inhibiting neu-
rons. The instant of attack is also relevant since if a large population
of neurons recently performed spikes, the voltage will be low and
it will tend to induce stimulation actions. Although the output in
terms of spikes is similar, their inner behavior is different.

SIN is another neural cyberattack that also presents similarities
with FLO in terms of the visual distribution of spikes. However, it
can be seen that there is a particular pattern in the attacked neurons,
caused by the real target of the attack: neuron 201, the first neuron
of the second layer. In this particular topology, it is determined by
the connections between layers of the computational model used.
Finally, NON induces a more chaotic behavior when the attack
progresses, evaluating the attack condition every 20 ms. As can be
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seen, it performs both stimulation and inhibition tasks, randomly
selected for each instant under attack and neuron of the first layer.

First �ve positions

Last �ve positions

Figure 11: Mean percentage of spikes reduced per neural
cyberattack compared with spontaneous behavior, studied
over the first and last five positions of the maze in a biologi-
cal simulation of 27 seconds

.

Once introduced the behavior of each neural cyberattack graph-
ically, Figure 11 depicts the impact caused by each cyberattack
compared to spontaneous behavior over a simulation of 27 seconds,
indicating the percentage of spikes reduction. This figure shows a
differentiation between the first five positions and the last five po-
sitions of the optimal path of the maze to find the exit, determining
which cyberattacks are more harmful in the short term and which
are more suitable for long-term attacks.

The variability presented per cyberattack corresponds to the
differences between the five positions considered, either the first
positions or the last ones. Moreover, for FLO, JAM, and SYB, which
randomly select the target neurons, ten executions are performed
to offer variability. Interestingly, the data presented for NON only
contains one execution since this attack introduces itself huge ran-
domness and would be difficult to compare.

Regarding these results, NON, due to its random behavior, achieves
a reduction of almost 12% over spontaneous activity in the first
five positions, being the most damaging cyberattack in the short
term, followed by JAM with almost a 5% of reduction. In contrast,
SCA is the most impacting attack for the long term, causing a spike
reduction of around 9%, followed by NON with a reduction of 8%.

To conclude, it is essential to mention that the metric concerning
the number of spikes has been selected for this impact analysis due
to its relevance on a wide variety of neurological scenarios. Specifi-
cally, the amount of neuronal activity, measured as the number of
spikes of a neuronal population, could be helpful to evaluate the
impact of certain neurological diseases. As an example, both Amy-
otrophic Lateral Sclerosis (ALS) and epilepsy naturally generate
hyperexcitability of neuronal activity. In this direction, a cyberat-
tack based on neural stimulation, such as FLO, could hypothetically

disrupt the natural equilibrium between neuronal excitation and
inhibition, recreating or aggravating the disease. On the contrary,
neural cyberattacks generating neural inhibition like JAM could
recreate conditions such as Alzheimer’s disease. Based on that, this
publication considers the number of spikes an essential metric to
evaluate the damage caused by a cyberattack.

In terms of the generalization of results, these neural cyberat-
tacks have been evaluated over a simplistic and static network with
a limited variability compared to the biological visual cortex. In this
sense, future work is required to assess their impact on multiple
topologies. Moreover, and although the study of the applicability
and impact of neural cyberattacks to induce particular neurological
conditions is a promising research field, future work is needed to
evaluate if our results are consistent with experimentation over
realistic biological topologies and even in vivo studies. Additionally,
the study of the human-level impact attending to different dimen-
sions, such as psychology or ethics, is out of the scope of this work
(for further read, see [4]).

5 CONCLUSION
Novel BCI generations bring countless benefits to society, improv-
ing their capabilities to offer better recording and stimulation resolu-
tions. Moreover, the authors envision a future where the reduction
in electrode size will derive in a broad coverage of the brain with
single-neuron resolution. Although these improvements represent
a paradigm change, vulnerabilities in these technologies open the
door for cyberattacks to cause physical damage to users.

Based on the previous concerns, this work presents a taxonomy
of eight neural cyberattacks aiming to disrupt spontaneous neural
activity by maliciously inducing neuronal stimulation or inhibition,
exploring the possibility of recreating the effects of particular neu-
rodegenerative conditions. In this sense, two groups of cyberattacks
are defined, either based on performing the attack at a particular
instant or during a temporal window. These cyberattacks have been
evaluated over a neuronal topology modeling a particular region of
a mouse’s visual cortex. Since there is a lack of realistic neuronal
topologies nowadays, and following current literature, a convolu-
tional neural network has been trained to surpass this limitation
due to their similarities with biological ones.

The impact of each cyberattack has been measured and compared
over a common neural topology, being Neural Nonce and Neural
Jamming the most damaging cyberattacks in the short term, causing
a spike reduction of around 12% and 5% over spontaneous signaling,
respectively. In contrast, Neural Scanning and Neural Nonce are
more suitable for long-term damage, causing an approximate spike
reduction of 9% and 8%, respectively.
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