Extractive Control effects on Gambusia holbrooki: the case of an exotic fish population from an isolated semi-arid stream (SE, Spain).

Oliva-Paterna FJ, Ruiz-Navarro A, Moreno-Valcárcel R, Verdiell-Cubedo D \& M Torralva

Deparment of Zoology and Anthrophology, University of Murcia. $\mathbf{3 0 1 0 0}$ Murcia. Spain. ffer

INTRODUCTION

Gambusia holbrooki (Girard 1859) is a Poecillidd among the most invasive fish worldwide (IUCN) widely spread in Iberian Peninsula. It is considered one of the main causes of the reduction of Aphanius iberus populations, an Iberian endemic species which is catalogued Endangered (EN) by several Spanish, international laws and IUCN. A LIFE-Nature project (www.carm.es/siga/europallife0035) has been making exclusive efforts to increase the survival of two defined genetic units of A.iberus in the southeast of Spain. This project includes a control programme by periodical extraction of G . holbrooki from an isolated population cohabiting with A. iberus in a small semiarid creek (Chicamo stream).
The objective of the present study was to determine the effects of the extraction control on the biology traits of that population of G . holbrooki.

METHODS

The sampling site was an isolated stretch ($<300 \mathrm{~m}$ long) of the Chicamo stream just in its source, where the initial density of G. holbrooki was not very high. From November 2005 to December 2008 a total of 72 extractive sampling events were carried out, (weekly on reproductive period: April-September). Fish were extracted by sieving (1 mm mesh size) for a minimum of 30 minutes and setting 20 minnow-traps for roughly 24 hours.
Total captures were sexed and measured (TL, mm), 1567 individuals were eviscerated to get the total weight (TW, g), eviscerate weight (EW, g) and gonadal weight (GW, g).
Relative population density was monitored twice per season by catch per unit of effort (CPUE; 1 unit being a passive trap for 12 h).
Age and Population structure was assessed using both scales and monthly length-frequency distributions. Polimodal decomposition was based on the method described by Bhattacharya (1967) and NORMSEP (SEParation of the NORMally distributed components) (FiSAT Ver. 1.01).
Size diversity indices were evaluated on the (2008)

Somatic Condition and Gonadal Activity status were indexed by predicted values of the
ANCOVAs (factor: seasons) from EW-TL and GW-TL relationships respectively (proposed by García-Berthou \& Moreno-Amich 1993).

Carcia-Berthou $E \&$ Moreno-Amich R. 1993. Multivariate analysis of covariance in
morphometric studies of the reproductive cycle. Can J Fish and Aquat Sci 50 : $1394-1399$. morphometric studies of the reproductive cycle. Can J Fish and Aquat Sci 50 : 1394 -1399.
Quintana $\times \mathrm{XD}$, Brucet S , Boix D , Lopez-Flores R , Gascon S , Badosa A , Sala J, Moreno-

Sampling area in Chicamo Stream (SE Spain), sampling methods and

RESULTS \& CONCLUSIONS

Relative densities were significantly lower in autumn, winter and spring of 2007 (Fig 1), no individuals were captured during 2008. Maximum CPUE means appeared at the beginning of the study Autumn 2005, Winter 2006) and decreased throughout the extraction period. CPUEs were significantly lower for the last year of the study CPUE2005 $=3.1 \pm 2.2$; CPUE2006 $=0.8 \pm 0.3$; CPUE2007 $=0.5 \pm 0.02$; Kruskal Wallis $\mathrm{H}=21.4 \mathrm{p}<0.001$).
Age structure showed three classes in females (F) $(0+1+$ and $2+)$ and wo in males (M) ($0+$ and $1+$). Length frequency distributions along the study period showed important changes (much clear in Autumn) with a significant decrement of long individuals (males $>30 \mathrm{~mm} \mathrm{TL}$;
emales $>40 \mathrm{~mm}$ TL) (Figs 2 and 4).
Cohort 1+ of M disappeared two months earlier (June) during the 2007 reproductive period (Fig 3).

Figure 1. CPUE of G. holbrookialong the study period. Comparisons of CPUE between
years have been made by ANOVA ($\mathrm{p}<\mathbf{0 . 0 5}$).

Figure 3. Length Frequency Distribution during recruitment period.

Figure 4. Relative abundance of long males ($\mathrm{T}>30 \mathrm{~mm}$) and long females

Figure 2. Length-frequency distributions of individuals for autumn (October-December).

x (DI) of Ne population along the study period.

Somatic Condition

In both cycles, Size Diversity Index showed a similar pattern, although November-April values are significantly higher in 2007 (ANOVA $\mathrm{p}=0.01$; SDI $2006=0.90$, SDI 2007 $=1.35$). SDI s during the breeding season (April-September) did not present significant Maxima values in the reproductive presence of new born individuals, presence of new born individuals, sioreproductive period of the sec

owever, hi
cycle could
tructure of
 y different.

- During the post-winter veriod when condition values in $1+$ cohort
are inaresing, significant differences between cycles 2006 and 2007) in both the y-intercept of EW-TL. relationships and in 2.
attern GW in. Y-intercept of GW-TL. relationships and predicted values of GW in $0+$ cohorts were not significantly different during its breeding period (August-October).
During the maturation period and the first stage into the reproductive season when gonad activity in $1+$ cohorts are highest, there were significant differences between cycles (2006 and 2007) in both the y-intercept of GW-TL and in the predicted GWs. F of 2007 ($1+$ cohort) showed higher reproductive effort than the same ageclass in 2006 measured as a significant increment in the predicted GWs.
Higher variation was observed in Sex-ratio during 2007. Moreover ust in the beginning of the breeding season (April-May), the second cycle (2007) showed lower proportion of F than in the same period of 2006 (X^{2} p=0.025).
During the first part of the recruitment period (May-J uly) in 2007, new-born ratio in relation to adults was significantly higher than in 2006 (X2 p<0.001), but not at the end of this period (AugustNovember, $\mathrm{X}^{2} \mathrm{p}=0.490$) probably as a result to the extraction control.

